Interaction newtonienne

Exercice 1 TRAJECTOIRE CIRCULAIRE

On considère un satellite de masse m sur une trajectoire circulaire de rayon r autour d'un corps sphérique de masse M et de rayon R.

- 1. Déterminer en fonction de r et des constantes caractéristiques du problème : la vitesse v sur la trajectoire, la période T de révolution, le moment cinétique σ par rapport au centre de la trajectoire, l'énergie mécanique $E_{\rm m}$.
- 2. Retrouver l'expression de la constante de la loi de KÉPLER.

Exercice 2 Satellite géostationnaire

Un satellite est dit géostationnaire lorsqu'il est immobile dans tout référentiel lié à la Terre

- Montrer que la trajectoire d'un satellite géostationnaire est obligatoirement dans le plan équatorial.
- 2. Déterminer l'altitude h d'un tel satellite.

 $Donn\'ees: g_0 = 9.81 \text{ m.s}^{-2}; R_T = 6.37.10^6 \text{ m}; \text{jour sid\'eral}: T = 86.2.10^3 \text{ s}.$

Exercice 3 LANCEMENT D'UN SATELLITE

Un satellite de masse m est lancé d'une base M_0 située à la latitude λ .

Quelle énergie ΔE faut-il fournir pour le placer une une orbite circulaire de rayon r? Exprimer le résultat en fonction de m, λ , g_0 , et $\omega_{\rm T}$ vitesse angulaire de la Terre dans le référentiel géocentrique. Commenter.

Exercice 4 COMÈTE HALE – BOPP

La comète HALE – BOPP a, dans le référentiel de COPERNIC, dont on prendra le centre S du Soleil pour origine, une trajectoire conique autour de S dont l'excentricité est e=0,995 et la période de révolution $T=2,4.10^3$ an. Pour analyser un tel mouvement, on considère que ces deux corps sont à symétrie sphérique et qu'ils forment un système isolé. On note H le centre de la comète.

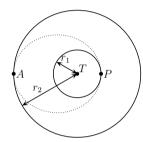
- 1. On rappelle que l'équation de la trajectoire de la comète en coordonnées polaires (r,θ) peut s'écrire : $r=\frac{p}{1+e\cos\theta}$.
 - (a) Donner l'allure de la trajectoire en précisant la position de S, celle de l'aphélie (point le plus éloigné de S) et du périhélie (point le plus proche de S).
 - (b) Établir la relation entre $p,\,e$ et le demi-grand axe $a_{\rm H}$ de l'ellipse
- 2. (a) À l'aide de la troisième loi de KÉPLER appliquée à la comète et à la Terre, calculer le demi grand axe de l'ellipse. En déduire p. On rappelle le demi-grand axe de la Terre : $a_{\rm T}=1,49.10^{11}$ m.
 - (b) Calculer, en m, la distance r_{max} de S à l'aphélie et la distance r_{min} de S au périhélie. Quelle est la distance qui sépare la Terre de la comète au périhélie de sa trajectoire?
- 3. (a) Que peut-on dire de la composante radiale de la vitesse de H au périhélie et à l'aphélie ? Justifier.
 - (b) Calculer la vitesse minimale v_{\min} de la comète sachant que sa vitesse maximale a la valeur $v_{\max} = 2.00.10^5 \text{ km.h}^{-1}$.

4. Quelle est l'énergie mécanique de la comète dans son mouvement autour du Soleil? Calculer sa valeur en joules, sachant que sa masse vaut $m_{\rm H}=2,0.10^{12}$ kg et que $GM_{\rm S}=1,33.10^{20}$ m $^3.{\rm s}^{-2}$. Commenter le signe de l'énergie.

Exercice 5 TELLIPSE DE TRANSFERT

PCSI1. Fabert (Metz)

On désire transférer un satellite terrestre d'une orbite circulaire basse de rayon r_1 sur une orbite circulaire haute de rayon $r_2 > r_1$ (cf. schéma ci-dessous). Pour cela, en un point P de l'orbite basse, on communique à l'aide de fusées pendant un temps très court une vitesse supplémentaire faisant décrire au satellite une demi-ellipse se raccordant tangentiellement en A à l'orbite haute. Arrivé en A on communique à nouveau au satellite le supplément de vitesse lui permettant de décrire l'orbite circulaire haute.



On note g_0 l'accélération de pesanteur à la surface de la Terre et R_T le rayon terrestre.

- 1. Exprimer l'énergie totale du satellite sur l'orbite elliptique en fonction de $r_1 + r_2$. On rappelle que r_1 et r_2 sont les distances respectives des périgée et apogée de la trajectoire au centre de la Terre.
- 2. Calculer la vitesse v_1 du satellite sur son orbite basse et la vitesse v_1' après l'utilisation des fusées ($\vec{v_1}$ et $\vec{v_1}'$ sont colinéaires).
- 3. À quelle vitesse v_2' le satellite atteint-il le point A? Quelle est la vitesse finale v_2 du satellite sur son orbite haute?

Exercice 6 POINTS DE LAGRANGE

On considère, dans un référentiel galiléen \mathscr{R} , trois points matériels non alignés $A_1,\ A_2$ et A_3 formant un système isolé et interagissant entre eux par la loi de gravitation. On suppose que ces trois points, de masse respectives $m_1,\ m_2$ et m_3 constituent un solide et le triangle qu'ils forment tourne uniformément par rapport à \mathscr{R} avec une vitesse angulaire ω perpendiculaire au plan qu'ils définissent. On étudie le système dans le référentiel \mathscr{R}' où \mathscr{R}' est en rotation à la vitesse angulaire $\vec{\omega}$ par rapport à \mathscr{R} et a pour centre G, le centre d'inertie des trois points matériels.

- 1. Écrire en fonction de $\vec{r_1}$, $\vec{r_2}$ et $\vec{r_3}$ vecteurs positions de A_1 , A_2 et A_3 dans \mathscr{R}' et des distances $r_{12} = A_1 A_2$ et $r_{13} = A_1 A_3$ les forces qui s'exercent sur A_1 dans \mathscr{R}' .
- 2. Appliquer la loi fondamentale de la dynamique à A_1 dans le référentiel et simplifier l'expression puis en déduire que $r_{12}=r_{13}$.
- 3. En déduire que les trois points matériels sont situés aux sommets d'un triangle équilatéral dont on calculera le côté en fonction des masses et de ω .

© Matthieu Rigaut Interaction newtonienne 1 / 4 © Matthieu Rigaut Interaction newtonienne 2 / 4

PCSI1, Fabert (Metz)

MÉCANIQUE, TD N°6

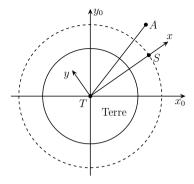
2010 - 2011

PCSI1, Fabert (Metz) MÉCANIQUE, TD N°6

Exercice 7 Arrimage d'un satellite *...

Une station orbitale S gravite autour de la Terre sur une orbite circulaire de rayon r_0 .

On donne l'accélération de pesanteur à la surface de la Terre $g_0=9,81~\rm m.s^{-2}$ et le rayon terrestre $R_{\rm T}=6,36.10^6~\rm m.$



- 1. Trouver la vitesse de satellisation v_s de la station à une altitude de 900 km et calculer sa période de révolution T_0 autour de la Terre.
- 2. On veut arrimer à cette station un satellite artificiel A, de masse m. Pour étudier les possibilités de cet arrimage, on analyse le mouvement de A dans le référentiel tournant $\mathscr{R} = (Txyz)$ d'origine le centre T de la Terre et dont l'axe (Tx) est défini par le vecteur \overrightarrow{TS} . L'axe (Ty) est dans le sens du mouvement de la station.
 - (a) Expliquer pour quoi l'arrimage du satellite à la station est impossible par freinage ou par accélération si A est initialement sur la même orbite que S.
 - (b) Effectuer le bilan des forces exercées sur A dans \mathscr{R} . Écrire vectoriellement ces forces en fonction de $\vec{r} = \overrightarrow{TA}$, de la vitesse \vec{v} de A par rapport à \mathscr{R} et de $\omega = \frac{v_s}{r_0}$.
 - (c) En déduire la relation vectorielle issue de la loi fondamentale de la dynamique appliquée à A dans \mathscr{R} .
- 3. Dans le cas où $r \simeq r_0$, expliciter l'équation vectorielle précédente selon les axes (Sx) et (Sy). On fera un développement limité de r à l'ordre un en $\frac{x}{r_0}$ et $\frac{y}{r_0}$.
- 4. Dans le cas où A et S sont très proches l'un de l'autre, montrer que les coordonnées x(t) et y(t) de A dans $\mathscr R$ satisfont les équations d'évolution suivantes :

$$\ddot{x}(t) = 3\omega^2 x(t) + 2\omega \dot{y}(t) \qquad \text{et} \qquad \ddot{y}(t) = -2\omega \dot{x}(t)$$

- (a) À quelle force soit-on attribuer les termes $2\omega\,\dot{y}(t)$ et $-2\,\omega\,\dot{x}(t)$?
- (b) Intégrer la deuxième équation en tenant compte des conditions initiales :

$$x(0) = 0$$
; $y(0)dezero = y_0$; $\dot{x}(0) = v_0$ et $\dot{y}(0) = 0$

- (c) En déduire que x(t) et y(t) sont des fonction sinusoïdales de période T_0 .
- (d) Montrer que la trajectoire de A dans $\mathscr R$ est une ellipse sont on déterminera le centre et les axes.

En déduire que la durée nécessaire à l'arrimage peut s'écrire α T_0 , α étant à déterminer. Quelle doit être la valeur correspondante de y_0 ?

Exercice 8 Chute libre ou ... ou ...

Un corps est abandonné sans vitesse initiale à une distance du Soeil égale au rayon de l'orbite de la Terre autour du Soleil.

2010 - 2011

Caculer numériquement la durée que ce corps mettra pour atteindre le Soleil (considéré comme ponctuel) avec pour seule donnée numérique la durée de révolution de la Terre : 365,25 jours.