Régimes transitoires

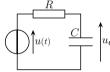
TP N°4 – ÉLECTROCINÉTIQUE

Dans ce TP vous allez être amené tout d'abord à mesurer les grandeurs caractéristiques d'une bobine et d'un condensateur. Vous utiliserez ensuite des deux composants dans un circuits R,L,C de manière à vérifier la justesse des relations obtenues en cours.

Ce TP s'appuie sur le travail effectué lors du chapitre § ELCT 3 Circuits en régime transitoire.

Pour ce TP vous devez rédiger un seul compte-rendu par binôme qui sera rendu à la fin de la séance. Toutes les valeurs numériques, graphes et autres remarques doivent être dans le compte-rendu qui, d'une manière générale, doit être totalement autonome. Il paraît plus que judicieux de rédiger le compte-rendu au fur et à mesure.

Tous les documents sont autorisés.

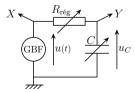

.....

I) Circuit R,C

1°) Résultats théoriques

Soit le circuit ci-contre où $u(t)=U_0={\bf C}^{\rm te}$ pour t<0 (U_0 peut être positive, nulle ou négative) et $u_{\bf C}(0^-)=U_0$.

À t=0, la fém du générateur passe instantanément de $u(t)=U_0$ à la valeur $u(t)=E={\bf C}^{\rm te}$ (avec E valeur quelconque).



- \Rightarrow Trouvez l'expression de $u_C(t)$ ainsi que l'expression de la constante de temps τ associée.
- \Rightarrow Au bout de quelle durée $\Delta_{RC}t$ le régime permanent continu (RPC) peut-il être considéré comme atteint à mieux que 1 % près ?

2°) Réalisation expérimentale

i. montage

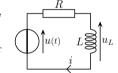
 \Rightarrow Réalisez le montage ci-dessous avec $C=10~{\rm nF}$; $R_{\rm rég}=10~{\rm k}\Omega$ et u(t) une tension rectangulaire de valeur minimum $U_{\rm min}=0.0~{\rm V}$, de valeur maximum $U_{\rm max}=5.0~{\rm V}$ et une fréquence telle que le RP soit tout juste atteint sur chaque demi-période.

Utilisez le condensateur réglable et ne modifiez plus le réglage jusqu'à la fin du TP quel que soit le prétexte.

→ Imprimez les courbes obtenues sur l'écran en faisant apparaître la position de la valeur de tension nulle et le fait que le RPC soit atteint sur chaque demi période. (IMPRESSION N°1)

ii. exploitation

- \Rightarrow Réglez l'oscilloscope de manière à pouvoir mesurer la constante de temps expérimentale $\tau_{RC}^{\rm exp}$ du circuit avec l'une des deux méthodes suivantes :
 - → méthode de la tangente n'importe où : imprimez l'écran de l'oscilloscope et déterminez le point d'intersection entre l'asymptote et la tangente;
 - \rightarrow méthode de la variation moitié : repérez l'instant t_1 où le signal a varié de la moitié de sa variation totale. En notant t_0 l'instant initial, nous avons alors $t_1 t_0 = \tau_{RC} \ln 2 = 0.693 \tau_{RC}$.
- → Faites les mesures sur une nouvelle impression. (IMPRESSION N°2)
- \Rightarrow Mesurez la résistance $R_{\text{rég}}$ et déduisez-en la valeur théorique de la constante de temps τ_{RC}^{th} du circuit.
- \Rightarrow Pourquoi la valeur de la capacité C utilisée pour les calculs est sûrement plus éloignée de sa valeur réelle que $R_{\rm rég}$ ou $R_{\rm g}$?
- \Rightarrow En considérant que la mesure de τ_{RC} fournit une estimation plus juste de la capacité C, déterminez celle-ci et conservez cette valeur jusqu'à la fin du TP.

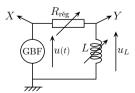


Ici il faut changer une valeur pour des calculs futur et pas le réglage physique du condensateur.

II) Circuit R,L

1°) D'autres résultats

Soit le circuit ci-contre où $u(t)=U_0={\bf C}^{\rm te}$ pour t<0 (U_0 peut être positive, nulle ou négative) et $i(0^-)=\frac{U_0}{R}$.



À t=0, la fém du générateur passe instantanément de $u(t)=U_0$ à la valeur $u(t)=E=\mathrm{C^{te}}$ (avec E valeur quelconque).

- \Rightarrow Trouvez l'expression de l'intensité i(t) ainsi que celle de la tension aux bornes de la bobine $u_L(t)$ et introduisez une constante de temps τ_{RL} dont vous donnerez l'expression.
- → Au bout de combien de temps est-il possible de considérer que le RPC est atteint?
- → Quel est le modèle électrocinétique d'une bobine en basses fréquences? En hautes fréquences?

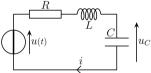
2°) Expérience

 \Rightarrow Réalisez le montage ci-dessous avec L=1,0 H; $R_{\text{rég}}=10$ k Ω et u(t) une tension rectangulaire de valeur minimum $U_{\min}=0,0$ V, de valeur maximum $U_{\max}=5,0$ V et de fréquence telle que le RP soit tout juste atteint sur chaque demi-période.

Utilisez la bobine réglable et ne modifiez plus le réglage jusqu'à la fin du TP quel que soit le prétexte.

© Matthieu Rigaut Régimes transitoires 1 / 4 © Matthieu Rigaut Régimes transitoires 2 / 4

- \Rightarrow Imprimez l'écran de l'oscilloscope avec un réglage tel qu'il est possible de voir les positions de V=0 pour les voies X et Y ainsi que le le
- → Faites un zoom autour d'une discontinuité de f.é.m de générateur.
- \Rightarrow Pourquoi n'obtenez-vous pas la courbe théorique attendue pour $u_L(t)$ aux alentour des discontinuités de f.é.m. du générateur?
- → Imprimez le problème (IMPRESSION N°3) et dessinez sur l'impression réalisée ce qu'aurait dû être la courbe théorique.
- \Rightarrow Mesurez les résistances r_L de la bobine et $R_{\text{rég}}$ avec un ohmmètre (ne pas oublier de les débrancher pour effectuer les mesures).
- \Rightarrow À l'aide de la méthode **non** utilisée précédemment, déterminez la constante de temps expérimentale $\tau_{RL}^{\rm exp}$ du circuit.
- \Rightarrow Calculez la valeur théorique τ_{RL}^{th} de la constante de temps du circuit à partir des valeurs de $R_{\text{rég}}$, r_{L} , R_{g} et L et comparez la avec τ_{RL}^{th} .
- \Rightarrow Pourquoi la valeur de l'inductance L utilisée pour les calculs est sûrement plus éloignée de sa valeur réelle que $R_{\text{rég}}$, R_{g} ou r_L ?
- \Rightarrow En considérant que la mesure de τ_{RL} fournit une estimation plus juste de l'inductance L, déterminez celle-ci et conservez cette valeur jusqu'à la fin du TP.



Il faut ici modifier une valeur pour des calculs ultérieurs et surtout pas le réglage physique de la bobine.

III) Circuit R, L, C série

1°) Le modèle théorique

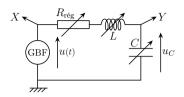
Soit le circuit ci-contre où $u(t)=U_0={\bf C^{te}}$ pour t<0 (U_0 peut être positive, nulle ou négative), $i(0^-)=0$ et $u_C(0^-)=U_0$. À t=0, la fém du générateur passe instantanément de $u(t)=U_0$ à $u(t)=E={\bf C^{te}}$ (avec E valeur quelconque).

 \Rightarrow Retrouvez l'équation différentielle vérifiée par la tension $u_C(t)$ et donnez l'expression de la pulsation propre, de la période propre et du facteur de qualité.

Régime apériodique.

- \Rightarrow Quelle est la condition sur Q pour que le régime soit dit apériodique?
- ⇒ Montrez que si $Q \ll 1$, le régime apériodique est assimilable à une variation exponentielle de la forme $e^{-Q \omega_0 t}$.
- \Rightarrow Lorsque la condition précédente est vérifiée, au bout de quelle durée $\Delta_{RLC}^{\rm ap}t$ le RPC est-il atteint?

Régime critique.


- \Rightarrow Quelle est la condition sur Q pour que le régime soit dit critique?
- \Rightarrow Quelle est alors l'expression de la résistance en fonction de L et C?

Régime pseudo-périodique.

- \Rightarrow Quelle est la condition sur Q pour que le régime soit dit pseudopériodique?
- \Rightarrow Montrez que l'enveloppe des pseudo-oscilations est en $e^{-\omega_0 t/(2Q)}$.
- \Rightarrow Au bout de quelle durée $\Delta_{RLC}^{pp}t$ le RPC est-il atteint?
- \Rightarrow Montrez que si $Q \gg 1$, la pulsation ω_p des oscillations est telle que $\omega_p = \omega_0$.

2°) Montage expérimental en régime apériodique

 \Rightarrow Réalisez le montage ci-contre avec la bobine et le condensateur utilisés précédemment et u(t) une tension rectangulaire de valeur minimum $U_{\min} = 0.0 \text{ V}$ et de valeur maximum $U_{\max} = 5.0 \text{ V}$.

- \Rightarrow Déterminez la valeur de $R_{\text{rég}}$ pour avoir Q=0,1 et réglez-la en conséquence.
- \Rightarrow Réglez la fréquence du GBF pour que le RP soit tout juste atteint sur chaque demi-période et imprimez l'écran de l'oscilloscope de telle sorte que les positions de V=0 pour les voies X et Y soient visibles. (IMPRESSION N°4)
- ⇒ En considérant que $Q \ll 1$ et en exploitant la décroissance exponentielle de la tension observée, déterminez $Q_{\rm ap}^{\rm exp}$ en utilisant une des deux méthodes précédentes (tangente à l'origine ou celle de la tension moitié). (IMPRESSION N°5)
- ⇒ Déterminez graphiquement la durée $\Delta_{RLC}^{\rm ap,prat}t$ au bout de laquelle le RP est atteint et comparez avec la valeur obtenue théoriquement en considérant $Q \ll 1$ et, bien sûr, $Q = Q^{\rm ap,prat}$.
- ⇒ Faites la même chose en ayant au préalable modifié la valeur de $R_{\text{rég}}$ pour avoir Q = 0.01 et Q = 0.4. Commentaire et imprimez à chaque fois les écrans montrant le RPC et l'écran permettant la mesure. (IMPRESSION N°6) (IMPRESSION N°7) (IMPRESSION N°8) (IMPRESSION N°9)

3°) Régime critique

- → Conservez le montage précédent.
- \Rightarrow Réglez $R_{\text{rég}}$ pour observer le régime critique (il sera peut-être utile de modifier simultanément la fréquence du GBF afin de conserver une bonne qualité d'observation).
- \rightarrow Mesurez à l'ohmmètre $R_{\text{rég}}$.
- \Rightarrow Calculez le facteur de qualité $Q_{\rm c}^{\rm exp}$ à l'aide des valeurs des différents composants intervenant dans le circuit et comparez avec la valeur théorique.

4°) Régime pseudo-périodique

- → Conservez le montage précédent.
- \Rightarrow Déterminez la valeur que doit avoir $R_{\text{rég}}$ pour avoir Q=5 et réglez-la en conséquence.
- → Réglez la fréquence du GBF de telle sorte que le RP soit tout juste atteint sur chaque demi période. (IMPRESSION N°10)
- \Rightarrow Déterminez la pulsation ω^{exp} des pseudo-oscillations et comparez avec la pulsation propre ω_0 .
- \Rightarrow Déterminez le facteur de qualité $Q_{\rm pp}^{\rm exp}$ du circuit en exploitant la décroissance exponentielle de $u_{\rm C}(t)$ et comparez avec la valeur théorique attendue. (IMPRESSION N°11)
- ⇒ Déterminez graphiquement la durée $\Delta_{RLC}^{pp,prat}t$ au bout de laquelle le RP est atteint et comparez avec la valeur obtenue théoriquement en considérant $Q = Q^{pp,prat} \gg 1$.
- \Rightarrow Quelle est la valeur maximale Q_{max} de Q réalisable en **pratique**?
- \Rightarrow Réglez $R_{\text{rég}}$ de telle sorte que le facteur de qualité Q soit maximal.
- ⇒ Déterminez à nouveau graphiquement la durée $\Delta_{RLC}^{\text{pp,prat}}t$ au bout de laquelle le RP est atteint et comparez avec la valeur obtenue théoriquement en considérant $Q \gg 1$. Commentaire. (IMPRESSION N°12)