PCSI1, Fabert (Metz)

TP N°17 – Mécanique

2010 - 2011

Lanceur à bille

L'objectif de ce TP est de déterminer l'accélération de pesanteur à partir du mouvement d'une bille.

I) Théorie

1°) Chute libre

- \Rightarrow Établissez rapidement l'équation de la trajectoire d'un point matériel lancé de l'altitude h, à une vitesse $\vec{v_0}$ faisant un angle $\alpha > 0$ vers le haut à partir de l'horizontal ($\alpha = 0$ étant un tir horizontal et $\alpha = +\pi/2$ un tir vertical vers le haut) dans le cas d'une chute libre.
- → Justifiez le fait qu'une bille puisse être assimilée à un point matériel.
- → Justifiez le fait que la poussée d'Archimède soit négligée.

La force de frottement exercée par l'air s'écrit $\vec{v}=-6\,\pi\,\eta\,r\,\vec{v}$ où r est le rayon de la bille et $\eta=10^{-5}$ SI est la viscosité de l'air.

i? Quelle est la dimension de η? Dans quelle mesure la force de frottement est-elle négligeable?

2°) Portée

→ Dans le cas d'un lancer avec un point de départ d'altitude nul, montrez que la portée s'écrit

$$p = \frac{v_0^2 \sin(2\alpha)}{g}$$

 \Rightarrow Sachant que le lancer se fait en comprimant un ressort de $\Delta \ell$, reliez $\Delta \ell$ à la portée p.

II) Expérience

1°) Dispositif

© Matthieu Rigaut

Vous disposez d'un lanceur à bille d'inclinaison et de compression initiale variable fixé à une table. En repérant la graduation avant de lancer la bille, il est possible de reproduire plusieurs fois une expérience avec les mêmes conditions initiales.

2°) À partir de la portée

- \Rightarrow À l'aide d'un dispositif de votre choix que vous préciserez, déterminez la portée pour différentes valeurs de α à v_0 constant.
- \Rightarrow Écrivez la loi de la portée sous forme d'une fonction linéaire de X où X ne dépend pas de g et déduisez-en g.
- → Á l'aide d'une méthode de votre choix, déterminez la constante de raideur du ressort du lanceur.

3°) À partir de la trajectoire

- \Rightarrow Avec le matériel mis à votre disposition, repérez pour v_0 et α fixés un nombre suffisants de points (x,h(x) où x est la distance horizontale parcourue depuis le lancer et h(x) la hauteur correspondante.
- → Tracez le nuage de points obtenu à l'aide d'un tableur.

- PCSI1, Fabert (Metz) TP N°17 Mécanique 2010 2011
- \Rightarrow Tracez la courbe théorique à partir de la valeur théorique que **vous** avez mesurée de g.
- → Commentez, imprimez et envoyez le fichier de calcul à mon adresse usuelle.

 $oldsymbol{\it Lanceur}$ à bille 1 / 2 © Matthieu Rigaut $oldsymbol{\it Lanceur}$ à bille 2 / 2