Électromagnétisme

Chapitre 3

Onde électromagnétique

# Onde électromagnétique

La synthèse de la théorie électromagnétique par MAXWELL mit un point « final » au débat sur la nature ondulatoire ou corpusculaire de la lumière même si, nous le savons, EINSTEIN, puis la mécanique quantique, reviendront dessus. Toutefois, avec ces lois, il est désormais clair qu'il existe des ondes électromagnétiques et c'est HERTZ qui, le premier, a réussi à les mettre en évidence.

Dans ce chapitre nous allons nous intéresser à ces ondes électromagnétiques. Nous verrons ainsi, dans une première partie, les ondes en tant que telles : l'équation à laquelle elles obéissent, la manière de les décrire, etc. Dans une deuxième partie nous verrons comment interragissent une onde et un atome. Enfin, dans une dernière partie, nous verrons en détails deux exemples d'ondes.

6

# Table des matières

## **Biographies succinctes**

| Ι | Pro | pagatio                 | n 7                                                                                                                                    |  |  |  |  |  |  |  |  |  |
|---|-----|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|   | I·1 | Équatio                 | ons de propagation $\ldots \ldots 7$ |  |  |  |  |  |  |  |  |  |
|   |     | $I \cdot 1 \cdot i$     | pour $\vec{E}$ et $\vec{B}$                                                                                                            |  |  |  |  |  |  |  |  |  |
|   |     |                         | pour $\vec{E}$                                                                                                                         |  |  |  |  |  |  |  |  |  |
|   |     |                         | pour $\vec{B}$                                                                                                                         |  |  |  |  |  |  |  |  |  |
|   |     | $I \cdot 1 \cdot ii$    | interprétation                                                                                                                         |  |  |  |  |  |  |  |  |  |
|   | I·2 | Solution                | ns en OPP et OPPM                                                                                                                      |  |  |  |  |  |  |  |  |  |
|   |     | $I \cdot 2 \cdot i$     | de l'OPP à l'OPPM                                                                                                                      |  |  |  |  |  |  |  |  |  |
|   |     |                         | visualisation                                                                                                                          |  |  |  |  |  |  |  |  |  |
|   |     |                         | traduction pour une OPP                                                                                                                |  |  |  |  |  |  |  |  |  |
|   |     |                         | version OPPM                                                                                                                           |  |  |  |  |  |  |  |  |  |
|   |     | $I \cdot 2 \cdot ii$    | équations de MAXWELL et OPPM                                                                                                           |  |  |  |  |  |  |  |  |  |
|   |     |                         | réécrire nabla                                                                                                                         |  |  |  |  |  |  |  |  |  |
|   |     |                         | réécrire MAXWELL 11                                                                                                                    |  |  |  |  |  |  |  |  |  |
|   |     |                         | relation de dispersion 11                                                                                                              |  |  |  |  |  |  |  |  |  |
|   |     | I.2. <i>jij</i>         | relation de structure 12                                                                                                               |  |  |  |  |  |  |  |  |  |
|   |     | 1 2 000                 | énoncé 12                                                                                                                              |  |  |  |  |  |  |  |  |  |
|   |     |                         | représentation 13                                                                                                                      |  |  |  |  |  |  |  |  |  |
|   |     |                         | démonstration 13                                                                                                                       |  |  |  |  |  |  |  |  |  |
|   |     | I.2. in                 | spectre électromagnétique                                                                                                              |  |  |  |  |  |  |  |  |  |
|   |     | I.2. w                  | $retour \ge 1' OPP $ 14                                                                                                                |  |  |  |  |  |  |  |  |  |
|   | T.3 | Étate de                | $\frac{14}{14}$                                                                                                                        |  |  |  |  |  |  |  |  |  |
|   | 1.9 |                         | 14                                                                                                                                     |  |  |  |  |  |  |  |  |  |
|   |     | 1.3. <i>ii</i>          | différentes polarisations                                                                                                              |  |  |  |  |  |  |  |  |  |
|   |     | 1.3. <i>iii</i>         | traduction formalle de la polarisation                                                                                                 |  |  |  |  |  |  |  |  |  |
|   |     | 1.3. <i>i</i> u         |                                                                                                                                        |  |  |  |  |  |  |  |  |  |
|   |     | 1.2.40                  | a reterm $\dots \dots \dots$           |  |  |  |  |  |  |  |  |  |
|   | т 4 | 1.5.v iumiere polarisee |                                                                                                                                        |  |  |  |  |  |  |  |  |  |
|   | 1•4 | Energet                 | lque des OPPM                                                                                                                          |  |  |  |  |  |  |  |  |  |
|   |     | 1.4.1                   | densite volumque d'energie                                                                                                             |  |  |  |  |  |  |  |  |  |
|   |     |                         | hen entre les champs                                                                                                                   |  |  |  |  |  |  |  |  |  |
|   |     | т 4 😳                   | les densites instantanées                                                                                                              |  |  |  |  |  |  |  |  |  |
|   |     | $1 \cdot 4 \cdot ii$    | vecteur de POYNTING                                                                                                                    |  |  |  |  |  |  |  |  |  |
|   | T F | $1 \cdot 4 \cdot iii$   | a partir de la notation complexe                                                                                                       |  |  |  |  |  |  |  |  |  |
|   | 1.9 | Undes s                 | spheriques                                                                                                                             |  |  |  |  |  |  |  |  |  |
|   |     | 1.9.1                   | solution analytique                                                                                                                    |  |  |  |  |  |  |  |  |  |
|   |     |                         | evidence experimentale                                                                                                                 |  |  |  |  |  |  |  |  |  |
|   |     |                         | resultat                                                                                                                               |  |  |  |  |  |  |  |  |  |
|   |     | T                       | démonstration partielle                                                                                                                |  |  |  |  |  |  |  |  |  |
|   |     | $1 \cdot 5 \cdot ii$    | structure locale                                                                                                                       |  |  |  |  |  |  |  |  |  |
|   |     |                         | quelle coincidence!                                                                                                                    |  |  |  |  |  |  |  |  |  |
|   |     | <b></b>                 | démonstration                                                                                                                          |  |  |  |  |  |  |  |  |  |
|   |     | $1 \cdot 5 \cdot iii$   | interprétation                                                                                                                         |  |  |  |  |  |  |  |  |  |
|   |     |                         | résultat                                                                                                                               |  |  |  |  |  |  |  |  |  |
|   |     |                         | démonstration                                                                                                                          |  |  |  |  |  |  |  |  |  |

| $\mathbf{II}$ | Ond          | les au n               | iveau atomique 3                                                                                                             | 31 |
|---------------|--------------|------------------------|------------------------------------------------------------------------------------------------------------------------------|----|
|               | II·1         | Descript               | tion dipôlaire de la matière                                                                                                 | 31 |
|               |              | $II \cdot 1 \cdot i$   | origine, description                                                                                                         | 31 |
|               |              |                        | dipôle électrique                                                                                                            | 31 |
|               |              |                        | dipôle magnétique                                                                                                            | 32 |
|               |              | $II \cdot 1 \cdot ii$  | champ créé                                                                                                                   | 32 |
|               |              |                        | approximation dipôlaire                                                                                                      | 32 |
|               |              |                        | champ $\vec{E}$ créé par un dipôle électrique                                                                                | 33 |
|               |              |                        | champ $\vec{B}$ créé par un dipôle magnétique                                                                                | 33 |
|               |              |                        | hors approximation dipôlaire                                                                                                 | 34 |
|               |              | $II \cdot 1 \cdot iii$ | actions subies                                                                                                               | 34 |
|               |              |                        | qualitativement                                                                                                              | 34 |
|               |              |                        | expression                                                                                                                   | 35 |
|               |              |                        | réinterprétation pour le dipôle magnétique                                                                                   | 36 |
|               | $II \cdot 2$ | Atomes                 | comme source de champ : rayonnement dipôlaire $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ | 36 |
|               |              | $II \cdot 2 \cdot i$   | modèle d'une particule polarisable                                                                                           | 36 |
|               |              | $II \cdot 2 \cdot ii$  | échelle d'observation                                                                                                        | 36 |
|               |              | $II \cdot 2 \cdot iii$ | zone statique                                                                                                                | 37 |
|               |              |                        | voir l'approximation                                                                                                         | 37 |
|               |              |                        | retrouver le potentiel                                                                                                       | 38 |
|               |              |                        | retrouver le champ $\vec{E}$                                                                                                 | 39 |
|               |              | $II \cdot 2 \cdot iv$  | zone de rayonnement                                                                                                          | 39 |
|               |              |                        | résultat à ne pas connaître ŝ                                                                                                | 39 |
|               |              |                        | encore une coïncidence pour la structure                                                                                     | 40 |
|               |              |                        | puissance rayonnée                                                                                                           | 40 |
|               |              |                        | puissance rayonnée totale                                                                                                    | 42 |
|               | II·3         | Atome of               | dans un champ : polarisation électronique                                                                                    | 43 |
|               |              | $II \cdot 3 \cdot i$   | modèle de l'électron élastiquement lié                                                                                       | 43 |
|               |              |                        | description                                                                                                                  | 44 |
|               |              |                        | modélisation des phénomènes en terme de forces                                                                               | 44 |
|               |              | II·3· <i>ii</i>        | moment dipôlaire créé                                                                                                        | 45 |
|               |              |                        | situation                                                                                                                    | 45 |
|               |              |                        | moment dipolaire $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$                                     | 46 |
|               |              |                        | approximation                                                                                                                | 46 |
|               |              |                        | PFD                                                                                                                          | 47 |
|               |              | II·3· <i>iii</i>       | puissance rayonnée : diffusion RAYLEIGH                                                                                      | 48 |
|               |              |                        | considérations numériques pour l'atmosphère                                                                                  | 48 |
|               |              |                        | puissance rayonnée                                                                                                           | 48 |
|               |              |                        | réécriture                                                                                                                   | 49 |
|               |              |                        | interprétation                                                                                                               | 49 |
|               |              | $II \cdot 3 \cdot iv$  | couleur du ciel                                                                                                              | 50 |
|               |              |                        | en plein jour par temps dégagé                                                                                               | 50 |
|               |              |                        | en plein jour par temps légèrement couvert                                                                                   | 53 |
|               |              |                        | en plein jour par temps couvert                                                                                              | 53 |
|               |              |                        | la nuit                                                                                                                      | 54 |

| IIIExer | nples                   |                                                                                                                                                                       | 55 |
|---------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| III·1   | Conduct                 | teur électrique                                                                                                                                                       | 55 |
|         | $III \cdot 1 \cdot i$   | modèle de Drüde                                                                                                                                                       | 55 |
|         | $III \cdot 1 \cdot ii$  | mise en équation – approximation                                                                                                                                      | 55 |
|         | $III \cdot 1 \cdot iii$ | conductivité complexe                                                                                                                                                 | 56 |
|         |                         | expression                                                                                                                                                            | 56 |
|         |                         | première interprétation                                                                                                                                               | 57 |
|         | $III \cdot 1 \cdot iv$  | lois dans le conducteur                                                                                                                                               | 57 |
|         |                         | conservation de la charge                                                                                                                                             | 57 |
|         |                         | les équations de MAXWELL                                                                                                                                              | 58 |
|         |                         | relation de dispersion                                                                                                                                                | 58 |
|         | $III \cdot 1 \cdot v$   | basse fréquences : effet de peau                                                                                                                                      | 59 |
|         |                         | simplification de la relation de dispersion                                                                                                                           | 59 |
|         |                         | vecteur d'onde complexe                                                                                                                                               | 60 |
|         |                         | retrouvailles                                                                                                                                                         | 60 |
|         |                         | vitesses                                                                                                                                                              | 61 |
|         | $III \cdot 1 \cdot vi$  | haute fréquence : réflexion, transparence                                                                                                                             | 61 |
|         |                         | simplifier la relation de dispersion                                                                                                                                  | 61 |
|         |                         | premier cas : $\omega > \omega_{\rm p} \gg 1/\tau$                                                                                                                    | 62 |
|         |                         | premier cas : $\omega_{\rm p} > \omega \gg 1/\tau$                                                                                                                    | 62 |
| III·2   | Guide d                 | 'onde                                                                                                                                                                 | 63 |
|         | $III \cdot 2 \cdot i$   | présentation                                                                                                                                                          | 63 |
|         |                         | guide d'onde réel                                                                                                                                                     | 63 |
|         |                         | modélisation                                                                                                                                                          | 64 |
|         |                         | $\operatorname{contraintes}_{\vec{J}} \ldots $ | 64 |
|         | $III \cdot 2 \cdot ii$  | champ $E$                                                                                                                                                             | 65 |
|         |                         | contrainte                                                                                                                                                            | 65 |
|         |                         | contrainte de l'équation de propagation                                                                                                                               | 65 |
|         |                         | $\stackrel{resolution}{}  \ldots  \ldots  \ldots  \ldots  \ldots  \ldots  \ldots  \ldots  \ldots $                                                                    | 65 |
|         | III·2· <i>iii</i>       | champ $B$                                                                                                                                                             | 67 |
|         |                         | expression                                                                                                                                                            | 67 |
|         |                         | interprétation                                                                                                                                                        | 68 |
|         | $III \cdot 2 \cdot iv$  | relation de dispersion                                                                                                                                                | 69 |
|         |                         | premier cas : $k^2 < 0$                                                                                                                                               | 69 |
|         |                         | deuxième cas : $k^2 > 0$                                                                                                                                              | 69 |
|         | $111 \cdot 2 \cdot v$   | aspect énergétique                                                                                                                                                    | 71 |
|         |                         | moyenne de la densité volumique d'énergie                                                                                                                             | 71 |
|         |                         | moyenne du vecteur de POYNTING                                                                                                                                        | 72 |
|         |                         | vitesse de transport de l'énergie                                                                                                                                     | 72 |
|         | $111 \cdot 2 \cdot vi$  | VISION EN OPPM                                                                                                                                                        | 73 |
|         |                         | transformation technique                                                                                                                                              | 73 |
|         |                         | visualisation                                                                                                                                                         | 73 |
| Fiche d | e révisi                | on                                                                                                                                                                    | 75 |

# **Biographies succintes**

Georg Ohm

(1789 Erlangen, Bavière – 1854 Munich)



Georg reçoit de son père, serrurrier de profession, une solide formation en science (mathématique, physique, chimie, philosophie). À 15 ans il entre à l'université d'Erlangen mais, trop peu concentré sur ses études (il préfère jouer ua billard et faire du patin à glace) il est envoyé en Suisse un an plus tard. Bien qu'ayant eu son doctorat en 1811 il végète sur de petits postes qui lui permettent tout juste de joindre les deux bouts. En 1817 un livre qu'il a écrit seul impressionne Férdéric-Guillaume III de Prusse qui le nomme professeur à Cologne. Georg entrera à l'école polytechnique de Nuremberg en 1833 avant d'être promu professeur 1852, deux ans avant sa mort.

## John William STRUTT, baron de Rayleigh

(1842 Landford Grove, Angleterre – 1919 Witham, Angleterre)



John STRUTT de santé fragile étudie à Cambridge et finit major en mathématique de sa promotion. Il succède à son père prématurément décédé pour gérer le domaine familiale mais transmet rapidement cette charge à son jeune frère afin de pouvoir poursuivre ses recherches scientifiques. Professeur à Cambridge puis directeur du laboratoire Cavendish de 1879 à 1884 il s'intéresse tout particulière aux molécules et aux atomes et à leurs dimensions. Il est l'auteur de 445 articles scientifiques dans de nombreux domaines et reçoit le prix Nobel de physique en 1904.

## Heinrich Rudolf HERTZ

(1857 Hambourg – 1894 Bonn)



Heinrich comme par des études technique à Francfort-sur-le-Main mais se réoriente vers des études plus scientifiques afin de ne pas être confronté aux problèmes industriels et économiques. C'est ainsi qu'en 1879, à l'institut de physique de Berlin, il est élève de KIRCHHOFF et HELMHOLTZ. En 1885, il est nommé professeur à l'École polytechnique de Karlsruhe et se marie l'année suivante avec Elisabeth Doll. C'est en 1888 qu'il découvre les ondes électromagnétiques. La légende raconte qu'il aurait dit, après une démonstration à ses étudiants, qu'il n'y aurait jamais d'application à ces ondes. Heinrich décède trop tôt pour voir MARCONI le détromper, même pas 7 ans plus tard.



## Paul Carl Ludwig DRÜDE

(1863 Brunswick – 1906 Berlin)

Paul DRÜDE commence des étude de mathématiques mais en 1894 il s'oriente vers la physique théorique. Il enseigne à Leipniz et travaille essentiellement sur les cristaux où il réalise des mesures très précises de constantes optiques de divers matériaux. C'est lui qui introduit en 1894 la notation c pour la célérité de la lumière. En 1900 il introduit le modèle qui porte désormais son nom sur le comportement des électrons dans un solide.

## I – Propagation

## $I \cdot 1 -$ Équations de propagation

♦ C'est la base de la base que de savoir retrouver les équations de propagation pour les champs électrique et magnétique.

$$\mathbf{I} \cdot \mathbf{1} \cdot \mathbf{i} - \mathbf{pour} \ \vec{E} \ \mathbf{et} \ \vec{B}$$

 $\star$  pour  $\vec{E}$ 

loi

L'équation vérifiée par le champ électrique dans le vide est une équation de propagation est  $\vec{r} \rightarrow 1 \ \partial^2 \vec{E} = 1$ 

 $\vec{\Delta} \vec{E} = \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2}$  avec  $\frac{1}{c^2} = \mu_0 \varepsilon_0$ 

#### **∂** démonstration

 $\diamondsuit$  Commençons par réécrire les équations de MAXWELL dans le vide, i.e. dans un milieu sans charge ni matière.

$$\begin{array}{c|c} \text{Maxwell} - \text{Gauss} & \text{div} \ \vec{E} = 0 \\ \text{Maxwell} - \text{Faraday} & \overrightarrow{\text{rot}} \ \vec{E} = -\frac{\partial \vec{B}}{\partial t} \end{array} \end{array} \begin{array}{c} \text{Maxwell} - \text{Thomson} & \text{div} \ \vec{B} = 0 \\ \text{Maxwell} - \text{Faraday} & \overrightarrow{\text{rot}} \ \vec{E} = -\frac{\partial \vec{B}}{\partial t} \end{array} \end{array}$$

- ♦ Nous constatons que les équations de MAXWELL FARADAY et MAXWELL AMPÈRE sont bien des équations de couplage, car elles font appel à des dérivées spatiale et temporelle des deux grandeurs que nous pouvons déjà soupçonner d'être duales :  $\vec{E}$  et  $\vec{B}$ .
- $\diamond$  « Comme d'habitude », calculons le rotationnel du rotationnel de  $\vec{E}$  de deux manières différentes en commençant par la définition du laplacien vectoriel.

$$\overrightarrow{\operatorname{rot}} \left( \overrightarrow{\operatorname{rot}} \vec{E} \right) = \overrightarrow{\operatorname{grad}} \left( \operatorname{div} \vec{E} \right) - \vec{\Delta} \vec{E}$$

 $\diamondsuit$  Et avec l'équation de MAXWELL – GAUSS, nous obtenons

$$\overrightarrow{\operatorname{rot}} \left( \overrightarrow{\operatorname{rot}} \vec{E} \right) = \vec{0} - \vec{\Delta} \vec{E}$$

 $\diamondsuit$  Reprenons le rotationnel du rotationnel et utilisons MAXWELL – FARADAY

$$\overrightarrow{\operatorname{rot}} \left( \overrightarrow{\operatorname{rot}} \vec{E} \right) = \overrightarrow{\operatorname{rot}} \left( -\frac{\partial \vec{B}}{\partial t} \right)$$

♦ Nous pouvons intervertir les dérivées spatiale et temporelle (théorème de SCHWARZ)

$$\overrightarrow{\operatorname{rot}} \left( \overrightarrow{\operatorname{rot}} \vec{E} \right) = -\frac{\partial}{\partial t} \left( \overrightarrow{\operatorname{rot}} \vec{B} \right)$$

 $\diamondsuit$  Et là nous pouvons utiliser la loi de MAXWELL – AMPÈRE

$$\overrightarrow{\operatorname{rot}}\left(\overrightarrow{\operatorname{rot}}\vec{E}\right) = -\frac{\partial}{\partial t}\left(\mu_0\,\varepsilon_0\,\frac{\partial\vec{E}}{\partial t}\right) \qquad \rightsquigarrow \qquad \overrightarrow{\operatorname{rot}}\left(\overrightarrow{\operatorname{rot}}\vec{E}\right) = -\mu_0\,\varepsilon_0\,\frac{\partial^2\vec{E}}{\partial t^2}$$

 $\diamondsuit$  Ce qui donne, en regroupant

$$-\vec{\Delta} \, \vec{E} = -\mu_0 \, \varepsilon_0 \, \frac{\partial \vec{E}}{\partial t} \qquad \rightsquigarrow \qquad \vec{\Delta} \, \vec{E} = \mu_0 \, \varepsilon_0 \, \frac{\partial \vec{E}}{\partial t}$$

## $\bigstar$ pour $\vec{B}$

 $\diamondsuit$ Nous avons la même loi

| L'équation vérifiée par le champ magnétique dans le vide est une équation de |      |                                       |  |  |  |  |  |  |
|------------------------------------------------------------------------------|------|---------------------------------------|--|--|--|--|--|--|
| propagation est                                                              |      |                                       |  |  |  |  |  |  |
| $ec{\Delta}ec{B} = rac{1}{c^2}rac{\partial^2ec{B}}{\partial t^2}$          | avec | $\frac{1}{c^2} = \mu_0 \varepsilon_0$ |  |  |  |  |  |  |

 $\diamondsuit$  Pour le montrer, nous allons utiliser le même principe que pour le champ électrique

$$\overrightarrow{\text{rot}} \left( \overrightarrow{\text{rot}} \vec{B} \right) = \overrightarrow{\text{grad}} \left( \text{div} \vec{B} \right) - \vec{\Delta} \vec{B}$$

 $\diamond$  L'équation de MAXWELL – THOMSON donne

$$\overrightarrow{\mathrm{rot}} \left( \overrightarrow{\mathrm{rot}} \vec{B} \right) = \vec{0} - \vec{\Delta} \vec{B}$$

 $\diamondsuit$  En reprenant le rotationnel du rotationnel et en utilisant MAXWELL – AMPÈRE

$$\overrightarrow{\operatorname{rot}} \left( \overrightarrow{\operatorname{rot}} \vec{B} \right) = \overrightarrow{\operatorname{rot}} \left( \mu_0 \, \varepsilon_0 \, \frac{\partial \vec{E}}{\partial t} \right)$$

♦ Intervertisson les dérivées spatiale et temporelle (SCHWARZ)

$$\overrightarrow{\operatorname{rot}} \left( \overrightarrow{\operatorname{rot}} \vec{B} \right) = \mu_0 \,\varepsilon_0 \, \frac{\partial}{\partial t} \left( \overrightarrow{\operatorname{rot}} \vec{E} \right)$$

Puis Maxwell - Faraday

$$\overrightarrow{\operatorname{rot}}\left(\overrightarrow{\operatorname{rot}}\vec{B}\right) = -\mu_0 \,\varepsilon_0 \,\frac{\partial}{\partial t} \left(\frac{\partial \vec{B}}{\partial t}\right) \qquad \rightsquigarrow \qquad \overrightarrow{\operatorname{rot}}\left(\overrightarrow{\operatorname{rot}}\vec{B}\right) = -\mu_0 \,\varepsilon_0 \,\frac{\partial^2 \vec{B}}{\partial t^2}$$

 $\diamondsuit$ Ce qui donne, en regroupant

$$-\vec{\Delta} \, \vec{B} = -\mu_0 \, \varepsilon_0 \, \frac{\partial \vec{B}}{\partial t} \qquad \rightsquigarrow \qquad \vec{\Delta} \, \vec{B} = \mu_0 \, \varepsilon_0 \, \frac{\partial \vec{B}}{\partial t}$$

#### $I \cdot 1 \cdot ii - interprétation$

- ♦ Nous pouvons constater que les champs électrique et magnétique vérifient des équations de propagation. Les solutions sont donc en « r ct », même s'il s'agit d'un laplacien vectoriel.
- ♦ Le champ électrique est associé à l'énergie volumique  $u_{\rm el} = \frac{1}{2} \varepsilon_0 E^2$  et le champ magnétique est associé à l'énergie volumique  $u_{\rm mg} = \frac{1}{2\mu_0} B^2$ . L'énergie est bien sous deux formes différentes, elle peut se propager et les champs électrique et magnétique sont les deux grandeurs duales.
- $\diamond$  Remarquons enfin que les deux grandeurs duales vérifient la *même* équation de propagation, ce qui est fréquent mais non universel.

## $I \cdot 2$ – Solutions en OPP et OPPM

◊ Ici nous allons nous limiter aux OPP et OPPM. Attention de ne pas généraliser les résultats à des ondes quelconques !

## $I \cdot 2 \cdot i - de l'OPP a l'OPPM$

#### $\star$ visualisation

Une onde est dite *plane* lorsqu'à tout instant les surfaces d'onde sont des plans.

 $\diamond$  À un instant fixé (*i.e.* une photo), cela donne par exemple quelque chose comme ça



#### $\star$ traduction pour une OPP

- ♦ Nous voyons ci-dessus que  $\vec{E}$  ne dépend que de l'abscisse sur l'axe  $\vec{n}$ , *i.e.* ne dépend que de  $x \stackrel{\text{not}}{=} \overrightarrow{OM} \cdot \vec{n}$ .
- $\diamondsuit$  En coordonnées **cartésiennes**, le laplacien vectoriel s'écrit

$$\vec{\Delta} \vec{E} = (\triangle E_x) \vec{u}_x + (\triangle E_y) \vec{u}_y + (\triangle E_z) \vec{u}_z$$

 $\diamond$  Dans ces conditions, la projection de l'équation de propagation donne, par exemple sur  $\vec{u}_x$ ,

$$\triangle E_x = \frac{1}{c^2} \frac{\partial^2 E_x}{\partial t^2}$$

♦ Il s'agit là d'une équation de propagation dont nous connaissons les solutions en OPP

$$E_x(M,t) = E_{0,x}(t - \overrightarrow{OM} \cdot \vec{n}/c) + E_{0,x}(t + \overrightarrow{OM} \cdot \vec{n}/c)$$

#### $\diamond$ Nous reconnaissons là la somme d'une OPP et d'une OPP .

Les solution en OPP pour une propagation en 3D sont en 
$$t - \frac{\overrightarrow{OM} \cdot \vec{n}}{c}$$

 $\diamond$  Pour avoir le cas correspondant à  $t + \frac{\overrightarrow{OM} \cdot \vec{n}}{c}$ , il suffit de prendre  $\vec{n}' = -\vec{n}$ .

#### $\star$ version OPPM

♦ Considérons une OPPM se propageant suivant  $\vec{n}$  tel que  $\vec{k} = \frac{\omega}{c} \vec{n}$ .

 $\diamondsuit$  Dans ces conditions une OPPM d'un champ électrique avec trois composantes s'écrit

$$\vec{E}(M,t) = E_{0,x} \cos\left(\omega t - \vec{k} \cdot \overrightarrow{OM} + \varphi_x\right) \vec{u}_x + \\E_{0,y} \cos\left(\omega t - \vec{k} \cdot \overrightarrow{OM} + \varphi_y\right) \vec{u}_y + \\E_{0,z} \cos\left(\omega t - \vec{k} \cdot \overrightarrow{OM} + \varphi_z\right) \vec{u}_z$$

 $\diamondsuit$  En notation complexe, cela donne

$$\underline{\vec{E}} = \underline{\vec{E}_0} \times e^{j(\omega t - \vec{k} \cdot \overrightarrow{OM})} \quad \text{avec} \quad \underline{\vec{E}_0} = \begin{pmatrix} E_{0,x} e^{j\varphi_x} \\ E_{0,y} e^{j\varphi_y} \\ E_{0,z} e^{j\varphi_z} \end{pmatrix}$$

Une OPPM quelconque s'écrit, en notation complexe,  $\underline{\vec{E}} = \underline{\vec{E}_0} e^{j (\omega t - \vec{k} \cdot \overrightarrow{OM})}$ 

*kemarque.* Cela ne présage en **rien** de l'état de polarisation de l'onde (cf. infra).

#### $I \cdot 2 \cdot ii - equations de MAXWELL et OPPM$

#### $\star$ réécrire nabla

Dans le cas d'une OPPM en notation complexe et seulement pour une OPPM, nous avons  $\vec{\nabla}=-{\rm j}\,\vec{k}$ 

 $\diamondsuit$  Pour le montrer, reprenons l'OPPM en notation complexe

$$\underline{\vec{E}} = \underline{\vec{E}_0} \, \mathrm{e}^{\mathrm{j} \, (\omega \, t - \vec{k} \cdot \overrightarrow{OM})}$$

 $\diamondsuit$  Exprimons le produit scalaire  $\vec{k}\cdot\overrightarrow{OM}$ 

$$\begin{pmatrix} k_x \\ k_y \\ k_z \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = k_x x + k_y y + k_z z \qquad \rightsquigarrow \qquad \underline{\vec{E}} = \underline{\vec{E}_0} e^{j(\omega t - k_x x - k_y y - k_z z)}$$

♦ Dans ces conditions, nous voyons que, pour une OPPM en notation complexe :

- → dériver par rapport à x revient à multiplier par  $-j k_x$ ;
- → dériver par rapport à y revient à multiplier par  $-j k_y$ ;
- → dériver par rapport à z revient à multiplier par  $-jk_z$ .
- $\diamondsuit$  Et donc, finalement, pour nabla

$$\begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} = \begin{pmatrix} -j k_x \\ -j k_y \\ -j k_z \end{pmatrix} \quad \rightsquigarrow \quad \vec{\nabla} = -j \vec{k}$$

#### $\star$ réécrire Maxwell

 $\diamondsuit$ Reprenons les équations de MAXWELL dans le vide et réécrivons-les pour une OPPM complexe.  $\diamondsuit$  MAXWELL – GAUSS donne

 $\operatorname{div} \vec{E} = 0 \quad \rightsquigarrow \quad \vec{\nabla} \cdot \underline{\vec{E}} = 0 \quad \rightsquigarrow \quad -\mathbf{j} \, \vec{k} \cdot \underline{\vec{E}} = 0 \qquad \rightsquigarrow \qquad \vec{k} \cdot \underline{\vec{E}} = 0$ 

MAXWELL - FARADAY donne

$$\overrightarrow{\operatorname{rot}} \vec{E} = -\frac{\partial \vec{B}}{\partial t} \quad \rightsquigarrow \quad \vec{\nabla} \wedge \underline{\vec{E}} = -\mathbf{j}\,\omega\,\underline{\vec{B}} \quad \rightsquigarrow \quad -\mathbf{j}\,\vec{k}\wedge\underline{\vec{E}} = -\mathbf{j}\,\omega\,\underline{\vec{B}} \qquad \rightsquigarrow \qquad \vec{k}\wedge\underline{\vec{E}} = \omega\,\underline{\vec{B}}$$

A Maxwell – Thomson donne

$$\operatorname{div} \vec{B} = 0 \quad \rightsquigarrow \quad \vec{\nabla} \cdot \underline{\vec{B}} = 0 \quad \rightsquigarrow \quad -j \, \vec{k} \cdot \underline{\vec{B}} = 0 \qquad \rightsquigarrow \qquad \vec{k} \cdot \underline{\vec{B}} = 0$$

♦ Maxwell – Ampère donne

$$\overrightarrow{\operatorname{rot}} \vec{B} = \mu_0 \,\varepsilon_0 \,\frac{\partial \vec{E}}{\partial t} \quad \rightsquigarrow \quad \vec{\nabla} \wedge \vec{B} = \mathbf{j} \,\omega \,\mu_0 \,\varepsilon_0 \,\vec{E} \quad \rightsquigarrow \quad -\mathbf{j} \,\vec{k} \wedge \vec{B} = \mathbf{j} \,\omega \,\mu_0 \,\varepsilon_0 \,\vec{E} \qquad \rightsquigarrow \qquad \vec{k} \wedge \vec{B} = -\frac{\omega}{c^2} \,\vec{E}$$

 $\star$  relation de dispersion

Pour une OPPM dans le vide, la relation de dispersion s'écrit $\omega^2 = k^2 \, c^2 \label{eq:main}$ 

♦ Calculons  $\vec{k} \wedge (\vec{k} \wedge \vec{E})$  de deux manières différentes. Commençons par développer le double produit vectoriel

$$\vec{k} \wedge \left(\vec{k} \wedge \vec{E}\right) = \left(\vec{k} \cdot \vec{E}\right) \times \vec{k} - \left(\vec{k} \cdot \vec{k}\right) \times \vec{E}$$
$$\stackrel{\text{M-G}}{=} 0 - k^2 \vec{E}$$

 $\diamondsuit$  Calculons maintenant avec les autres lois de MAXWELL

$$\vec{k} \wedge \left(\vec{k} \wedge \vec{E}\right) \stackrel{\text{M-F}}{=} \vec{k} \wedge \left(\omega \vec{B}\right)$$
$$= \omega \left(\vec{k} \wedge \vec{B}\right)$$
$$\stackrel{\text{M-A}}{=} \omega \times \left(-\omega \mu_0 \varepsilon_0 \vec{E}\right)$$

 $\diamond$  En rassemblant

$$-k^2 \vec{E} = -\omega^2 \mu_0 \varepsilon_0 \vec{E} \qquad \rightsquigarrow \qquad k^2 \vec{E} = \frac{\omega^2}{c^2} \vec{E}$$

 $\diamondsuit$  Et comme cette relation est valable que l que soit le champ qui se propage, nous pouvons en déduire la relation de dispersion bien con nue

$$k^2 = \frac{\omega^2}{c^2}$$

#### $I \cdot 2 \cdot iii$ – relation de structure

La structure d'un champ  $(\vec{E}, \vec{B})$  est l'ensemble des caractères du trièdre  $(\vec{k}, \vec{E}, \vec{B})$ .

#### $\star$ énoncé

Pour une OPPM se propageant dans le vide, le trièdre  $(\vec{k}, \vec{E}, \vec{B})$  est normal et direct.

Un champ vectoriel propagatif  $\vec{E}$  est dit *transverse* lorsqu'à tout instant  $\vec{E}$  est normal à la direction de propagation.

Pour une OPPM dans le vide,  $\vec{E}$  et  $\vec{B}$  sont transverses.

Pour une OPPM dans le vide  

$$\underline{\vec{B}} = \frac{\vec{k} \wedge \underline{\vec{E}}}{\omega}$$

#### $\star$ représentation

 $\diamondsuit$  Visuellement, à un instant donné, ce la donne quelque chose comme ça.



♦ Comme nous le verrons plus bas, ceci est une onde très particulière, puisqu'il s'agit d'une onde polarisée rectilignement. Dans le cas plus général d'une onde polarisée elliptiquement, il faudrait imaginer que les plans bleu et jaune ci-dessus se vrillent tout en avançant.

#### $\star$ démonstration

- ♦ Les démonstrations sont immédiates à partir de la réécriture des équations de MAXWELL en version complexe.
- $\diamond$ Les équations de MAXWELL GAUSS et MAXWELL THOMSON montrent que les champs sont transverses

$$\vec{k} \cdot \underline{\vec{E}} = 0$$
 et  $\vec{k} \cdot \underline{\vec{B}} = 0$ 

♦ Quant à l'équation de MAXWELL – FARADAY, elle montre le lien entre  $\vec{B}$  et  $\vec{E}$  et prouve, du même coup que le trièdre  $(\vec{k}, \vec{E}, \vec{B})$  est direct

$$\vec{k} \wedge \underline{\vec{E}} = \omega \, \underline{\vec{B}} \qquad \rightsquigarrow \qquad \underline{\vec{B}} = \frac{\vec{k} \wedge \underline{\vec{E}}}{\omega}$$

### ${f I}{\cdot}2{\cdot}iv-{f spectre}$ électromagnétique

 $\diamondsuit$ Rappelons ici le spectre électromagnétique.

|   |         | 3.1 | $0^{11}$ |    | 3.10 | 14      |    | 3.1 | $0^{17}$ |   | 3.1 | $0^{20}$ | $\nu$ (Hz) |
|---|---------|-----|----------|----|------|---------|----|-----|----------|---|-----|----------|------------|
| • | Hertzie | n   |          | IR |      | visible | UV |     |          | Х |     |          | γ          |

- $\diamondsuit$  Les différents rayonnements sont les suivants
  - → le rayonnement hertzien est celui utilisé pour les communications (radio, satellite, portable), il y a trop peu d'énergie transportée pour que cela soit utilisable (sauf dispositifs idoines comme les fours à micro-onde);

- → le rayonnement IR est celui émis naturellement par les corps à température ambiante (lunette IR pour voir dans la nuit ou mode de cuisson au barbecue), du point de vue énergétique, cela se sent;
- $\rightarrow$  le visible, c'est le visible;
- → les UV sont des rayonnements plus énergétiques donc potentiellement plus dangereux, c'est pour cette raison que notre peau essaie de s'en prémunir en bronzant. D'ailleurs s'il n'y avait plus de couche d'ozone, nous aurions « quelques » problèmes;
- → les rayons X sont des rayons très pénétrants qui permettent de faire des radiographies, ils sont suffisamment énergétiques pour que des précautions soient prises à chaque radio;
- → mieux vaut ne pas être exposé à des rayon  $\gamma$  car, très énergétiques, ils peuvent pénétrer à l'intérieur des cellules et détruire des morceaux d'ADN qui, s'ils ne sont pas naturellement réparés, donnent naissance à des cellules cancéreuses.

### $I \cdot 2 \cdot v - retour a l'OPP$

Pour une OPP se propageant dans le vide, le trièdre  $(\vec{n}, \vec{E}, \vec{B})$  est normal et direct.

Pour une OPP,  $\vec{E}$  et  $\vec{B}$  sont transverses.

Pour une OPP dans le vide se propage ant dans la direction  $\vec{n}$ 

$$\vec{B} = \frac{\vec{n} \wedge \vec{E}}{c}$$

♦ Les démonstrations sont identiques à celles pour l'OPPM mais sont un peu plus lourde du fait qu'il faille gérer les fonctions quelconques (et leurs dérivées) correspondant aux ondes sur les différents vecteurs de base.

## $I \cdot 3$ – États de polarisation d'une OPPM

## $\mathbf{I} \cdot \mathbf{3} \cdot \mathbf{i} - \text{ onde polarisée } ?$

♦ Pour une onde transverse (se propageant par exemple sur  $\vec{u}_z$ ), il y a donc deux composantes : une sur  $\vec{u}_x$  et une sur  $\vec{u}_y$ .

La *polarisation* d'une onde caractérise la manière dont évoluent les composantes transverses d'une onde.

 $\diamondsuit$  Ici, il y a deux grandeurs transverses.

Par convention, la polarisation d'une onde est celle de son champ électrique.

◊ Imaginons une onde et la manière dont le champ évolue sur un plan d'onde. Nous pouvons observer la situation de deux points de vue : de face ou de dos.



 $\diamondsuit$  Ces deux points de vue sont opposés, il faut en choisir un.

Pour déterminer la polarisation d'une onde, il faut se placer  $\mathbf{face}$  à l'onde

- ♦ Autrement dit, il faut que l'onde se dirige **vers** l'observateur.
- ♦ Pour une onde se propageant suivant  $+\vec{u}_z$ , le plan d'onde **vu de face** se représente donc de la manière suivante



 $\diamond$ Comme les composantes sur  $\vec{u}_x$  et  $\vec{u}_y$  obéissent à l'équation de propagation, nous avons, en toute généralité

$$\vec{E} = \begin{pmatrix} E_{0,x} \cos(\omega t - k z + \varphi_x) \\ E_{0,y} \cos(\omega t - k z + \varphi_y) \\ 0 \end{pmatrix}$$

L'état de polarisation d'une onde est la courbe que dessine la pointe du champ  $\vec{E}$  dans un plan d'onde vu de face.

◇ Insistons sur le fait que, quelle que soit la polarisation, le fait d'être « incliné » n'est pas physique puisque cela dépend des axes choisis. C'est ainsi qu'une onde ne peut pas être inclinée puisqu'il est toujours possible d'imposer les axes idoines pour qu'elle ne le soit pas. En revanche, deux ondes peuvent être inclinées l'une par rapport à l'autre et, ça, c'est très intéressant et très utile.

## $I \cdot 3 \cdot ii - différentes polarisations$

Ce qui suit n'est pas à apprendre et à connaître en tant que tel car les résultats dépendent énormément du repérage choisi. En revanche la multiplicité des exemples est là pour montrer que la méthode, elle, est à connaître et savoir refaire. Quant aux résultats à connaître, ils suivent immédiatement cette section.

 $\diamondsuit$  L'état de polarisation d'une on de correspond à la forme de la courbe paramétrée définie par

$$\begin{cases} X(t) = E_{0,x} \cos \left(\omega t - k z + \varphi_x\right) \\ Y(t) = E_{0,y} \cos \left(\omega t - k z + \varphi_y\right) \end{cases}$$

- $\diamond$  Dans les expressions précédentes, z est fixé.
- $\diamondsuit$  Nous savons que ce la correspond à une ellipse dans le cas général, mais ce la regroupe en fait bon nombre de cas particuliers.
- Il y a tout d'abord la *polarisation elliptique gauche* qui correspond à une ellipse (pourquoi pas inclinée) dessinée en tournant sur la gauche.



Il y a, de manière analogue *polarisation elliptique droite* qui correspond à une ellipse (éventuellement inclinée) dessinée en tournant sur la droite.



 $\Rightarrow$  Mais il y a aussi la *polarisation circulaire* qui peut être *droite* ou *gauche* suivant que le sens de rotation se fait sur la droite ou sur la gauche.



♦ Enfin, il y a la *polarisation rectiligne* qui correspond à une portion rectiligne, éventuellement inclinée





La polarisation d'une onde peut être :

- $\rightarrow$  elliptique droite ou gauche;
- $\rightarrow$  circulaire droite ou gauche;
- $\rightarrow$  rectiligne.

### $I \cdot 3 \cdot iii$ – traduction formelle de la polarisation

 $\diamondsuit$ Reprenons les composantes du champ

$$\begin{cases} E_x(t) = E_{0,x} \cos \left(\omega t - k z + \varphi_x\right) \\ E_y(t) = E_{0,y} \cos \left(\omega t - k z + \varphi_y\right) \end{cases}$$

 $\diamondsuit$ Redéfinis<br/>sons l'instant initial tel que

$$\omega t' = \omega t - k z + \varphi_x$$

 $\diamond$  Nous avons alors

$$\omega t - k z + \varphi_y = \omega t - k z + \varphi_x + \varphi_y - \varphi_x \qquad \rightsquigarrow \qquad \omega t - k z + \varphi_y = \omega t' + \Delta \varphi \quad \text{avec} \quad \Delta \varphi = \varphi_y - \varphi_x$$

 $\diamond$  Il reste ainsi

$$\begin{cases} E_x(t') = E_{0,x} \cos\left(\omega t'\right) \\ E_y(t') = E_{0,y} \cos\left(\omega t' + \Delta\varphi\right) \end{cases} \quad \text{avec} \quad -\pi \leq \Delta\varphi \leq +\pi \end{cases}$$

 $\diamondsuit$  Et maintenant « yapuka » passer en revue tous les cas de déphasage possible.

 $\bigstar \Delta \varphi = 0$ 

 $\diamondsuit$ Réécrivons tout d'abord les coordonnées du champ

$$\begin{cases} E_x(t') = E_{0,x} \cos \left(\omega t'\right) \\ E_y(t') = E_{0,y} \cos \left(\omega t'\right) \end{cases}$$

 $\diamondsuit$  Pour tracer la courbe correspondant à la polarisation, la méthode ser a toujours la même :

- ① tracer le « rectangle de polarisation » qui correspond au rectangle de demi-largeur  $E_{0,x}$  et  $E_{0,y}$  dans lequel s'inscrit obligatoirement la courbe;
- <sup>(2)</sup> tracer le point correspondant à  $\omega t'_1 = 0$  (en bleu dans les schémas qui suivent) ainsi que son symétrique correspondant à l'instant  $\omega t'_3 = \pi$  (en violet dans les schémas qui suivent);

- 3 tracer le point correspondant à  $\omega t'_2 = \pi/2$  (en rouge dans les schémas qui suivent);
- ④ finir la courbe « à la main » et interpréter.

 $\diamondsuit$  Le point  $\omega\,t_3'=\pi$  est bien le symétrique du point  $\omega\,t_1'=0$  car

$$E_{0,x} \cos\left(\omega t_3'\right) = E_{0,x} \cos \pi = -E_{0,x}$$
$$E_{0,y} \cos\left(\omega t_3' + \Delta\varphi\right) = E_{0,y} \cos\left(\pi + \Delta\varphi\right) = -E_{0,y} \cos\left(\Delta\varphi\right)$$

 $\diamondsuit$  Ici, nous avons très vite

$$\vec{E}(t_1) = \begin{pmatrix} E_{0,x} \\ E_{0,y} \end{pmatrix}; \qquad \vec{E}(t_2) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \text{et} \qquad \vec{E}(t_3) = \begin{pmatrix} -E_{0,x} \\ -E_{0,y} \end{pmatrix}$$

 $\diamondsuit$ Cela donne le schéma ci-dessous



 $\diamond$  Puis la polarisation

 $\diamond$  Nous avons affaire à une *polarisation rectiligne*. Cela peut aussi se voir par le fait que les deux composantes sont proportionnelles

$$E_y(t') = \frac{E_{0,y}}{E_{0,x}} E_x(t')$$

 $\star 0 < \Delta \varphi < \pi/2$ 

♦ Même principe que ci-dessus. Commençons par réécrire le champ

$$\begin{cases} E_x(t') = E_{0,x} \cos(\omega t') \\ E_y(t') = E_{0,y} \cos(\omega t' + \Delta \varphi) \end{cases}$$

♦ Nous avons ainsi, sans oublier que  $0 < \Delta \varphi < \frac{\pi}{2}$ 

$$\vec{E}(t_1) = \begin{pmatrix} E_{0,x} \\ E_{0,y} \cos \Delta \varphi > 0 \end{pmatrix}; \quad \vec{E}(t_2) = \begin{pmatrix} 0 \\ -E_{0,y} \sin \Delta \varphi < 0 \end{pmatrix} \quad \text{et} \quad \vec{E}(t_3) = \begin{pmatrix} -E_{0,x} \\ -E_{0,y} \cos \Delta \varphi \end{pmatrix}$$

 $\diamondsuit$  Cela donne les trois points suivants



 $\Leftrightarrow$  Et nous pouvons prolonger



 $\diamondsuit$  Nous avons affaire à une polarisation elliptique droite.

- $\bigstar \ \Delta \varphi = \pi/2$
- $\diamondsuit$ La réécriture du champ

$$\begin{cases} E_x(t') = E_{0,x} \cos\left(\omega t'\right) \\ E_y(t') = -E_{0,y} \sin\left(\omega t'\right) \end{cases}$$

 $\diamondsuit$  Nous avons donc

$$\vec{E}(t_1) = \begin{pmatrix} E_{0,x} \\ 0 \end{pmatrix}; \qquad \vec{E}(t_2) = \begin{pmatrix} 0 \\ -E_{0,y} < 0 \end{pmatrix} \quad \text{et} \quad \vec{E}(t_3) = \begin{pmatrix} -E_{0,x} \\ 0 \end{pmatrix}$$

 $\diamond$  Cela donne les trois points suivants



 $\Leftrightarrow$  Et nous pouvons prolonger



- $\diamond$  Cela donne toujours une *polarisation elliptique droite*.
- $\diamond$  Dans le cas particulier où  $E_{0,x} = E_{0,y} \stackrel{\text{not}}{=} E_0$ , nous avons cette fois une polarisation circulaire droite.



 $\bigstar \ \pi/2 < \Delta \varphi < \pi$ 

 $\diamond$  Toujours pareil

$$\begin{cases} E_x(t') = E_{0,x} \cos(\omega t') \\ E_y(t') = E_{0,y} \cos(\omega t' + \Delta \varphi) \end{cases}$$

 $\diamondsuit$  Nous avons ainsi, sans oublier que  $\frac{\pi}{2} < \Delta \varphi < \pi$ 

$$\vec{E}(t_1) = \begin{pmatrix} E_{0,x} \\ E_{0,y} \cos \Delta \varphi < 0 \end{pmatrix}; \quad \vec{E}(t_2) = \begin{pmatrix} 0 \\ -E_{0,y} \sin \Delta \varphi < 0 \end{pmatrix} \quad \text{et} \quad \vec{E}(t_3) = \begin{pmatrix} -E_{0,x} \\ -E_{0,y} \cos \Delta \varphi \end{pmatrix}$$

 $\diamond$  Cela donne les trois points suivants



 $\diamond$  Et nous pouvons prolonger



 $\diamondsuit$  Nous avons affaire à une polarisation elliptique droite.

 $\bigstar \Delta \varphi = \pi$ 

 $\diamond$  Les composantes

$$\begin{cases} E_x(t') = E_{0,x} \cos\left(\omega t'\right) \\ E_y(t') = -E_{0,y} \cos\left(\omega t'\right) \end{cases}$$

 $\diamondsuit$  Nous voyons que les deux composantes sont proportionnelles, nous avons donc bien une *polarisation* rectiligne.



 $\star -\pi/2 < \Delta \varphi < 0$ 

 $\diamondsuit$  Pas de surprise

$$\begin{cases} E_x(t') = E_{0,x} \cos\left(\omega t'\right) \\ E_y(t') = E_{0,y} \cos\left(\omega t' + \Delta\varphi\right) \end{cases}$$

 $\diamondsuit$  Puis, avec  $-\frac{\pi}{2} < \Delta \varphi < 0$ 



 $\diamond$  Nous avons affaire à une *polarisation elliptique gauche*.

 $\bigstar \Delta \varphi = -\pi/2$ 

 $\diamond$  Le champ

$$\begin{cases} E_x(t') = E_{0,x} \cos(\omega t') \\ E_y(t') = E_{0,y} \sin(\omega t') \end{cases}$$

 $\diamond$  Ce qui donne



♦ Cela donne une polarisation elliptique gauche et, dans le cas particulier où  $E_{0,x} = E_{0,y} \stackrel{\text{not}}{=} E_0$ , nous avons cette fois une polarisation circulaire gauche.



 $\bigstar -\pi < \Delta \varphi < -\pi/2$ 

C'est reparti<sup>1</sup>

$$\begin{cases} E_x(t') = E_{0,x} \cos\left(\omega t'\right) \\ E_y(t') = E_{0,y} \cos\left(\omega t' + \Delta\varphi\right) \end{cases}$$

 $Cette fois -\pi < \Delta \varphi < -\frac{\pi}{2}$ 



 $\diamond$  Nous retrouvons une *polarisation elliptique gauche*.

1. Vive le copier-coller !

$$\bigstar \Delta \varphi = -\pi$$

 $\diamond$  C'est le dernier cas (ouf!)

$$\begin{cases} E_x(t') = E_{0,x} \cos\left(\omega t'\right) \\ E_y(t') = -E_{0,y} \cos\left(\omega t'\right) \end{cases}$$

 $\diamond$  Nous voyons que les deux composantes sont proportionnelles, nous avons donc bien une *polarisation* rectiligne.



## $I \cdot 3 \cdot iv - a$ retenir

 $\diamondsuit$ Il y a trop de cas à retenir, concentrons-nous sur les aspects vraiment importants.

Pour qu'une onde soit polarisée rectilignement, il faut :

- $\rightarrow$  soit une composante nulle;
- → soit des composantes en phase ( $\Delta \varphi = 0$ ) ou en opposition de phase ( $\Delta \varphi = \pm \pi$ ).

Pour qu'une onde soit polarisée circulairement, il faut :

- $\rightarrow$  les deux composantes de même amplitude;
- → et les deux composantes en quadrature de phase  $\Delta \varphi = \pm \frac{\pi}{2}$ .

Il est vivement déconseillé d'apprendre par cœur les liens droite-gauche avec  $\Delta \varphi$  car ils dépendent :

- $\rightarrow$  du sens de propagation;
- $\rightarrow$  des repérages;
- → de la convention pour  $\Delta \varphi$ .

## $\mathbf{I} \cdot \mathbf{3} \cdot v$ – lumière polarisée

Chaque onde a sa propre polarisation et n'en change pas à moins de traverser un milieu particulier.

 $\checkmark$  Les lames biréfringentes font parti des « milieux particuliers » permettant de changer la polarisation d'une onde.

La lumière naturelle est dite *non polarisée* car chaque train d'onde émis a une polarisation aléatoire. Cela se représente de la manière suivante



De la lumière est dite *polarisée* lorsque tous ses trains d'onde ont la même polarisation

- ♦ Dans le cas particulier de la production de lumière laser, il est parfois possible que celle-ci soit polarisée rectilignement.
- $\diamond$  Pour polariser rectilignement, une lumière non polarisée, le plus simple est de la faire traverser un *polariseur* qui va absorber une composante plutôt qu'une autre.



- ♦ Nous verrons, dans le dernier TP de l'année, d'autres moyens de polariser une lumière.
- À Rappelons qu'il est possible de polariser une lumière aussi par diffusion (de RAYLEIGH) et par réflexion (sous l'angle de BREWSTER).

## I·4 – Énergétique des OPPM

### $I \cdot 4 \cdot i - densité volumique d'énergie$

 $\star$  lien entre les champs



 $\diamondsuit$ Reprenons la relation de stucture en notation réelle

$$\vec{B} = \frac{\vec{k} \wedge \vec{E}}{\omega}$$

 $\diamondsuit$ Comme $\vec{k}$  et  $\vec{E}$  sont orthogonaux (cf. structure), en norme, cela donne

$$\|\vec{B}\| = \frac{\|\vec{k}\| \times \|\vec{E}\|}{\omega} \quad \text{et} \quad \omega = k c \quad \rightsquigarrow \quad \|\vec{B}\| = \frac{\|\vec{E}\|}{c}$$

#### $\star$ les densités instantanées

 $\diamondsuit$ La densité volumique d'énergie électrique s'écrit

$$u_{\rm \acute{e}l}(M,t) = \frac{1}{2} \,\varepsilon_0 \, E^2(M,t)$$

♦ Pour la densité volumique d'énergie magnétique, nous avons

$$u_{\rm mg}(M,t) = \frac{1}{2\,\mu_0} \, B^2(M,t) \quad \rightsquigarrow \quad u_{\rm mg}(M,t) = \frac{1}{2\,\mu_0 \, c^2} \, E^2(M,t) \qquad \rightsquigarrow \qquad u_{\rm mg}(M,t) = \frac{1}{2} \, \varepsilon_0 \, E^2(M,t)$$

 $\diamondsuit$  Autrement dit, en chaque point à chaque instant, nous avons

$$u_{\text{\'el}}(M,t) = u_{\text{mg}}(M,t)$$

 $\diamondsuit$  De plus, à un instant en un point que lconque, nous avons

$$u_{\text{elmg}}(M,t) = u_{\text{\'el}}(M,t) + u_{\text{mg}}(M,t) \qquad \rightsquigarrow \qquad u_{\text{elmg}}(M,t) = \varepsilon_0 E^2(M,t)$$

♦ Notons quand même, au passage, que la nature même de la propagation fait qu'il n'est pas étonnant de trouver un résultat du type

$$\langle u_{\text{\'el}}(M,t) \rangle = \langle u_{\text{mg}}(M,t) \rangle$$

#### $I \cdot 4 \cdot ii - vecteur de Poynting$

 $\diamondsuit$  Cherchons l'expression du vecteur de POYNTING en un point à un instant.

$$\vec{\Pi}(M,t) = \frac{\vec{E}(M,t) \wedge \vec{B}(M,t)}{\mu_0}$$

 $\diamondsuit$  Avec la relation de structure pour les OPP, ce la donne

$$\vec{\Pi}(M,t) = \frac{\vec{E}(M,t)}{\mu_0} \wedge \left(\frac{\vec{n} \wedge \vec{E}}{c}\right)$$

 $\diamondsuit$ Développons le double produit vectoriel

$$\vec{\Pi}(M,t) = \frac{1}{\mu_0 c} \left( \left( \vec{E}(M,t) \cdot \vec{E} \right) \times \vec{n} - \left( \vec{E}(M,t) \cdot \vec{n} \right) \vec{E} \times \right)$$

 $\Rightarrow$  Et comme  $\vec{E}(M,t) \cdot \vec{n} = 0$  (onde transverse), il reste

$$\vec{\Pi}(M,t) = \frac{E^2(M,t)}{\mu_0 c} \times \vec{n}$$

 $\diamondsuit$ Faisons apparaître la densité volumique d'énergie électromagnétique  $u_{\rm elmg}(M,t) = \varepsilon_0 \, E^2(M,t)$ 

$$\vec{\Pi}(M,t) = \frac{\varepsilon_0 E^2(M,t)}{\varepsilon_0 \,\mu_0 \,c} \times \vec{n} \qquad \rightsquigarrow \qquad \vec{\Pi}(M,t) = c \, u_{\text{elmg}}(M,t) \times \vec{n}$$

 $\diamond$  Comme nous l'avons déjà montré dans le chapitre 3 de mécanique (celui traitant de la propagation), la relation précédente caractérise le fait que l'énergie se déplace à la célérité c.

Pour une OPP, le vecteur de POYNTING représente l'énergie qui se déplace à la célérité c dans la direction  $\vec{n}.$ 

## $I \cdot 4 \cdot iii$ – à partir de la notation complexe

- ♦ Pour la notation complexe, et la notation complexe uniquement, nous pouvons calculer les valeurs moyennes de la manière suivante.
- $\diamondsuit$ Pour la densité volumique d'énergie électrique

$$u_{\text{\acute{e}l}}(M,t) = \frac{1}{2} \,\varepsilon_0 \, E^2(M,t) \qquad \rightsquigarrow \qquad \left\langle u_{\text{\acute{e}l}}(M,t) \right\rangle = \frac{1}{2} \,\varepsilon_0 \times \frac{1}{2} \,\operatorname{\mathfrak{R}e}\left(\underline{E} \times \underline{E}^\star\right)$$

 $\diamondsuit$ Pour la densité volumique d'énergie magnétique

$$u_{\rm mg}(M,t) = \frac{1}{2\,\mu_0} \, B^2(M,t) \qquad \rightsquigarrow \qquad \left\langle u_{\rm mg}(M,t) \right\rangle = \frac{1}{2\,\mu_0} \times \frac{1}{2} \, \Re e\left(\underline{B} \times \underline{B}^\star\right)$$

♦ Pour le vecteur de POYNTING

$$\vec{\Pi}(M,t) = \frac{\vec{E}(M,t) \wedge \vec{B}(M,t)}{\mu_0} \qquad \rightsquigarrow \qquad \left\langle \vec{\Pi}(M,t) \right\rangle = \frac{1}{\mu_0} \times \frac{1}{2} \operatorname{Re}\left(\underline{\vec{E}} \wedge \underline{\vec{B}}^{\star}\right)$$

## $I{\cdot}5$ – Ondes sphériques

### $\mathbf{I} \cdot \mathbf{5} \cdot \mathbf{i} - \mathbf{solution}$ analytique

#### $\star$ évidence expérimentale

 $\diamondsuit$  Les sources lumineuses génèrent spontanément des ondes sphériques divergentes



 $\diamondsuit$  Mais il y a aussi des ondes sphériques convergentes comme le montre l'expérience courante réalisée avec une lentille.



#### \* résultat

Pour une onde sphérique électrique, *i.e.* pour une onde telle que  $\vec{E}(M,t) = \vec{E}(r,t)$ , il n'y a de composantes que sur  $\vec{u}_{\theta}$  et sur  $\vec{u}_{\varphi}$  et ses composantes s'écrivent

$$E_{\theta \text{ ou } \varphi} = \frac{1}{r} \times \left( f(r-ct) + g(r+ct) \right)$$
 où

f et g sont des fonctions quelconques

#### $\star$ démonstration partielle

- $\diamond$  La démonstration commence par le calcul du laplacien vectoriel dans le cas d'une fonction *vectorielle* ne dépendant spatialement que de r.
- ♦ Le lecteur pourra montrer (avec le formulaire de son choix) que, pour un champ électrique ne dépendant que de r,  $\vec{E}(r,t)$ , nous avons

$$\vec{\Delta} \vec{E} = \overrightarrow{\text{grad}} \left( \operatorname{div} \vec{E} \right) - \overrightarrow{\text{rot}} \left( \overrightarrow{\text{rot}} \vec{E} \right) \quad \rightsquigarrow \quad (\cdots) \quad \rightsquigarrow \quad \vec{\Delta} \vec{E} = \begin{pmatrix} 0 \\ \triangle E_{\theta} \\ \triangle E_{\varphi} \end{pmatrix}$$

♦ La grande surprise de ce calcul purement technique vient de la présence du 0 sur  $\vec{u}_r$ . Nous pouvons maintenant projeter l'équation de propagation tridimensionnelle sur  $\vec{u}_{\theta}$  et  $\vec{u}_{\varphi}$ 

$$\triangle E_{\theta}(r,t) = \frac{1}{c^2} \frac{\partial^2 E_{\theta}}{\partial t^2}(r,t) \qquad \text{et} \qquad \triangle E_{\varphi}(r,t) = \frac{1}{c^2} \frac{\partial^2 E_{\varphi}}{\partial t^2}(r,t)$$

 $\Rightarrow$  Regardons à nouveau le formulaire donnant l'expression du laplacien pour une fonction en coordonnées sphérique et ne dépendant spatialement que de r. Nous trouvons

$$\triangle E_{\theta}(r,t) = \frac{1}{r} \times \frac{\partial^2}{\partial r^2} \left( r \times E_{\theta}(r,t) \right)$$

 $\diamondsuit$ Nous avons ainsi

$$\frac{1}{r} \times \frac{\partial^2}{\partial r^2} \left( r \times E_{\theta}(r,t) \right) = \frac{1}{c^2} \frac{\partial^2 E_{\theta}}{\partial t^2}(r,t) \qquad \rightsquigarrow \qquad \frac{\partial^2}{\partial r^2} \left( r \times E_{\theta}(r,t) \right) = \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \left( r \times E_{\theta}(r,t) \right)$$

♦ Dans ces conditions, nous pouvons voir que  $r \times E_{\theta}(r,t)$  obéit à l'équation d'onde. Nous connaissons alors la solution

$$r \times E_{\theta}(r,t) = f(r-ct) + g(r+ct)$$

- $\diamondsuit$  Et en divisant par r, nous obtenons bien le résultat attendu.
- $\diamondsuit$ Bien évidemment, la démonstration est la même pour la composante sur  $\vec{u}_{\varphi}.$

## $\mathbf{I} \cdot \mathbf{5} \cdot ii - \mathbf{structure locale}$

 $\star$  quelle coïncidence !

Une onde sphérique a la même structure locale qu'une OPP, à savoir, pour une onde divergente

$$\vec{B} = \frac{\vec{u}_r \wedge \vec{E}}{c}$$

 $\diamond$  En introduisant le vecteur  $\vec{k} \stackrel{\text{not}}{=} \frac{\omega}{c} \vec{u}_r$ , nous avons, pour une OSM

$$\vec{B} = \frac{\vec{k} \wedge \vec{E}}{\omega}$$

L'écriture précédente est *extrêmement* dangereuse car elle fait apparaître une notation  $\vec{k}$  qui n'est **pas** un vecteur d'onde. En effet, le faux vecteur  $\vec{k} = k \vec{u}_r$  dépend du point M choisi et, donc, ne peut

pas montrer *la* direction de propagation de l'onde. De plus, avec cette notation, il peut parfois être tentant d'utiliser la traduction en terme de  $\vec{k}$  de  $\vec{\nabla}$ . Et là, ça devient faux puisque cette traduction n'est vraie que pour les ondes **planes** progressives monochromatiques. Pourquoi utiliser une telle notation si elle est dangereuse? À cause de mauvaises et vieilles habitudes...

#### $\star$ démonstration

♦ Repartons de l'équation de MAXWELL – FARADAY

$$\overrightarrow{\mathrm{rot}} \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

- **Attention !** Traduire cette équation sous la forme  $-j\vec{k} \wedge \vec{E} = -j\omega\vec{B}$  est une **erreur** ici car l'onde n'est **pas** une OPPM.
- $\diamondsuit$  Avec un formulaire, et compte-tenu du fait que le champ  $\vec{E}$  ne dépende spatialement que de r, nous avons

$$\overrightarrow{\text{rot}} \vec{E} = 0 \times \vec{u}_r + \frac{1}{r} \left( 0 - \frac{\partial (r E_{\varphi})}{\partial r} \right) \vec{u}_{\theta} + \frac{1}{r} \left( \frac{\partial (r E_{\theta})}{\partial r} - 0 \right) \vec{u}_{\varphi}$$

 $\diamondsuit$  Projetons l'équation de MAXWELL – FARADAY sur  $\vec{u}_{\theta}.$  Cela donne

$$-\frac{1}{r} \times \frac{\partial(r E_{\varphi})}{\partial r} = -\frac{\partial B_{\theta}}{\partial t} \qquad \rightsquigarrow \qquad \frac{\partial(r E_{\varphi})}{\partial r} = \frac{\partial(r \times B_{\theta})}{\partial t}$$

♦ Notons

$$E_{\varphi} = \frac{1}{r} \times \left( f(r - ct) + g(r + ct) \right)$$

 $\diamondsuit$  Nous avons alors

$$\frac{\partial (r \times B_{\theta})}{\partial t} = f'(r - ct) + g'(r + ct)$$

 $\diamond$  Et en primitivant

$$r \times B_{\theta} = \frac{1}{c} \left( -f(r-ct) + g(r+ct) \right) + \text{termes non propagatifs}$$

 $\diamondsuit$  Ce qui conduit à

$$B_{\theta} = \frac{1}{r c} \left( -f(r-ct) + g(r+ct) \right)$$

- ♦ En faisant la même chose avec la composante sur  $\vec{u}_{\varphi}$  de  $\vec{B}$  (introduire F(r-ct) et G(r+ct)), le lecteur pourra montrer que
  - → \$\vec{B}\$ = \$\frac{\vec{u}\_r \lambda \vec{E}}{c}\$ pour la composante divergente (en \$f(r-ct)\$ et \$F(r-ct)\$);
     → \$\vec{B}\$ = \$\frac{(-\vec{u}\_r) \lambda \vec{E}}{c}\$ pour la composante convergente (en \$g(r+ct)\$ et \$G(r+ct)\$).

## $\mathbf{I} \cdot \mathbf{5} \cdot iii - interprétation$

#### $\star$ résultat

La décroissance en  $\frac{1}{r}$  d'une onde sphérique caractérise la conservation de l'énergie.

♦ Comme nous allons le voir, la diminution de l'amplitude est du à *l'étalement* de l'énergie et pas du tout à une absorption quelconque.

#### $\star$ démonstration

#### **vecteur de** Poynting

♦ Déterminons le vecteur de POYNTING pour une onde sphérique divergente. Pour cela, utilisons la relation de structure

$$\vec{\Pi}(M,t) = \frac{\vec{E}(M,t) \wedge \vec{B}(M,t)}{\mu_0} \quad \text{et} \quad \vec{B}(M,t) = \frac{\vec{u}_r \wedge \vec{E}(M,t)}{c} \quad \rightsquigarrow \quad \vec{\Pi}(M,t) = \frac{\vec{E}(M,t)}{\mu_0} \wedge \left(\frac{\vec{u}_r \wedge \vec{E}(M,t)}{c}\right)$$

 $\diamondsuit$ Développons le double produit vectoriel

$$\vec{\Pi}(M,t) = \frac{1}{\mu_0 c} \left( \left( \vec{E}(M,t) \cdot \vec{E}(M,t) \right) \times \vec{u}_r - \left( \vec{E}(M,t) \cdot \vec{u}_r \right) \times \vec{E}(M,t) \right)$$

♦ Et comme  $\vec{E}(M,t) \cdot \vec{u}_r = 0$  (l'onde  $\vec{E}$  est bien transverse puisqu'elle n'a de composante que sur  $\vec{u}_{\theta}$  et  $\vec{u}_{\varphi}$ ), il reste

$$\vec{\Pi}({\it M,t}) = \frac{E^2({\it M,t})}{\mu_0\,c}\,\times\,\vec{u}_r$$

 $\diamondsuit$  Introduisons les composantes du champ

$$E_{\theta}(r,t) = rac{f(r-c\,t)}{r}$$
 et  $E_{\varphi}(r,t) = rac{F(r-c\,t)}{r}$ 

 $\diamond$  Nous avons alors

$$\vec{\Pi}(M,t) = \frac{f^2(r-c\,t) + F^2(r-c\,t)}{\mu_0\,c\,r^2}\,\times\,\vec{u}_r$$

#### **∂** flux traversant une sphère

 $\diamondsuit$  Calculons le flux  $\Phi_{\Pi}$  traversant une sphère  ${\cal S}$  centrée en  ${\cal O}$  et de rayon  $r_0$ 



 $\diamondsuit$  Par définition du flux, nous avons

 $\diamondsuit$  Les expressions particulières du vecteur de POYNTING et du vecteur surface donnent

$$\Phi_{\Pi} = \oint_{P \in \mathcal{S}} \left( \frac{f^2(r_P - ct) + F^2(r_P - ct)}{\mu_0 \, c \, r_P^2} \times \vec{u}_r \right) \cdot \left( \mathrm{d}S_P \, \vec{u}_r \right)$$

 $\diamond$  Comme  $r_P = C^{te} = r_0$ , nous avons

 $\diamondsuit$  Et finalement

$$\Phi_{\Pi} = 4 \pi \times \frac{f^2(r_0 - ct) + F^2(r_0 - ct)}{\mu_0 c}$$

 $\diamond$  Ce résultat montre que le flux est propagatif, *i.e.* que toute l'énergie qui passe à travers la sphère de rayon  $r_1$  à l'instant  $t_1$  passera à travers la sphère de rayon  $r_2$  à l'instant  $t_2$ .



♦ Cela prouve bien que l'énergie se conserve.

# II – Ondes au niveau atomique

◇ Dans la suite, et sauf précision contraire, nous nous placerons dans le cas d'un milieu peu dense de manière à pouvoir considérer chaque atome, chaque molécule, isolé(e) et seul(e) face au champ électromagnétique.

## $II \cdot 1 - Description dipôlaire de la matière$

## $II \cdot 1 \cdot i - origine, description$

♦ Toutefois, la présence de charges peut potentiellement engendrer des champs électrique et magnétique.

#### $\star$ dipôle électrique

Un *dipôle électrique* (ou *dipôle*) est une répartition de charge globalement nulle mais dont le barycentre des charges positives ne coïncide pas avec le barycentre des charges négatives.

◇ L'exemple canonique est celui de la molécule d'eau. Son géométrie coudée et la plus forte électronégativité de l'oxygène par rapport à l'hydrogène, déplacent le barycentre des charges négatives un peu plus vers l'oxygène.



Un dipôle est caractérisé par son moment dipôlaire électrique  $\vec{p}$  (ou moment dipôlaire).  $q_A + q_B = 0$  et  $\vec{p} = q_A \overrightarrow{BA} = q_B \overrightarrow{AB}$   $\stackrel{\vec{p}}{\longrightarrow} \bullet q_B < 0$  $q_A > 0 \bullet$ 

♦ Comme le moment dipôlaire caractérise le dipôle, nous le retrouverons à la fois dans le champ que le dipôle crée et dans les actions que subit le dipôle une fois plongé dans un champ.

Un moment dipôlaire électrique s'exprime en debye (D) tel que  $1~{\rm D}\simeq \frac{1}{3}\,10^{-19}~{\rm C.m}$ 

 $\diamondsuit$ La définition réelle du debye est

 $1 \text{ D} = 10^{-18} \text{ statC.cm}$ 

#### $\star$ dipôle magnétique

- ♦ Normalement le moment magnétique est dû au mouvement des charges.
- ♦ Le problème, est que la définition du « mouvement » est très problématique à l'échelle atomique à cause du principe d'incertitude d'HEISENBERG qui énonce que, lorsque nous connaissons la position à  $\Delta x$  près et la vitesse à  $\Delta v_x$  près, alors nous avons<sup>2</sup>,

$$\Delta x \times \Delta v_x \sim \hbar$$
 avec  $\hbar = \frac{h}{2\pi}$ 

- ♦ Autrement dit : mieux nous connaissons la position, moins bien nous connaissons la vitesse, et réciproquement. Comment définir la trajectoire dans ces conditions ?
- $\diamondsuit$  En fait, au niveau quantique, ce qui compte c'est la dernière couche d'électrons :
  - $\rightarrow$  quand la dernière couche est pleine, le milieu est dit diamagnétique

→ quand la dernière couche est incomplète, le milieu est dit *paramagnétique* 

- ♦ Les aimants naturels sont *ferromagnétiques* à cause de l'interaction entre les atomes.
- ♦ Finalement, sauf pour les ferromagnétiques, les effets magnétiques dûs à l'aspect quantique se caractérisent par un moment magnétique  $\vec{\mathcal{M}}$ .



 $\diamondsuit$ Bien sûr, le vecteur surface est orienté par le sens du courant.

## $II \cdot 1 \cdot ii - champ créé$

### $\star$ approximation dipôlaire

L'approximation dipôlaire consiste à se placer à des distances très grandes devant les distances caractéristiques du dipôles.

 $\diamond$  Typiquement, si a est la distance entre les deux charges du dipôles (ou les deux barycentres), alors l'approximation dipôlaire consiste à faire

 $r \gg a$ 

<sup>2.</sup> $\hbar$  est appelée « la constante réduite de Planck ».

## $\bigstar$ champ $\vec{E}$ créé par un dipôle électrique



 $\diamondsuit$ Toujours dans l'approximation dipôlaire, le champ créé s'écrit

$$\vec{E}_{\rm dip} = -\overrightarrow{\rm grad} V \quad \rightsquigarrow \quad (\cdots) \quad \rightsquigarrow \quad \vec{E}_{\rm dip} = \frac{3 \left( \vec{p} \cdot \vec{r} \right) \times \vec{r} - r^2 \times \vec{p}}{4 \pi \varepsilon_0 r^5}$$

◊ L'écriture précédente n'est pas à connaître. L'auteur la donne juste pour information pour montrer qu'il est possible d'exprimer le champ créé par un dipôle de manière intrinsèque.



## $\bigstar$ champ $\vec{B}$ créé par un dipôle magnétique

 $\diamondsuit$  Par analogie, nous pouvons dire que

$$\vec{B}_{\rm dip} = \mu_0 \times \frac{3\left(\vec{\mathcal{M}} \cdot \vec{r}\right) \times \vec{r} - r^2 \times \vec{\mathcal{M}}}{4 \,\pi \, r^5}$$

Dans l'approximation dipôlaire, les lignes de champ électrique et magnétique sont identiques.



#### $\star$ hors approximation dipôlaire

 $\diamond$  Hors approximation dipôlaire, les lignes de champ électrique et magnétique ne se ressemblent pas du tout comme le montrent respectivement les deux graphes suivants.



 $\diamondsuit$  Nous pouvons constater que près des sources :

- $\rightarrow$  les lignes de champ électriques se rejoignent;
- → les lignes de champ magnétique forment des boucles.

### $II \cdot 1 \cdot iii - actions subies$

#### $\star$ qualitativement

Les dipôles ont tendance à s'orienter dans le sens des lignes de champ.



Quand un dipôle est orienté dans le sens du champ, il a tendance à aller vers les zones de champ intense.



 $\diamond$  Bien sûr, en pratique, l'orientation et le déplacement se font de conserve et c'est la raison pour laquelle un bâton électrisé attirera toujours un mince filet d'eau<sup>3</sup>.

 $\star$  expression

L'énergie contenue dans un dipôle rigide s'écrit  

$$\mathscr{E}_{dip} = -\vec{p} \cdot \vec{E}$$
 ou  $\mathscr{E}_{dip} = -\vec{\mathcal{M}} \cdot \vec{B}$ 

◇ La minimisation de l'énergie montre qu'effectivement les dipôles ont tendance à s'orienter dans le sens du champ.



3. Le lecteur pourra aller voir l'explication détaillée de cette expérience dans le cours de première année, chapitre 3 d'électromagnétisme.

♦ Une fois le dipôle  $\vec{p}$  (ou  $\vec{\mathcal{M}}$ ) fixé en direction et si  $\vec{p}$  (ou  $\vec{\mathcal{M}}$ ) est dans le sens du champ (de sorte que le produit scalaire soit positif), alors nous voyons bien que la force est dirigée dans le sens des  $\|\vec{E}\|$  (ou  $\|\vec{B}\|$ ) intense.

#### $\star$ réinterprétation pour le dipôle magnétique

♦ Regardons ce qu'il en est pour le dipôle magnétique.



 $\diamondsuit$ La minimisation de l'énergie conduit à :

- → la minimisation de  $-\vec{M} \cdot \vec{B}$ ;
- $\rightarrow$  la maximisation de  $+ \vec{M} \cdot \vec{B}$ ;
- $\rightarrow$  la maximisation de  $+\vec{S} \cdot \vec{B}$ ;
- → la maximisation de  $\Phi_B$ .

 $\diamondsuit$  Et le mieux dans tout cela, c'est que nous pouvons généraliser.

Une boucle de courant subit des actions telles que le flux du champ magnétique tende à augmenter.

## II·2 – Atomes comme source de champ : rayonnement dipôlaire

## $II \cdot 2 \cdot i - modèle d'une particule polarisable$



- $\diamond$  Nous voyons qu'une telle déformation peut engendrer l'apparition d'un moment dipôlaire  $\vec{p}$ .
- $\diamond$  La question est alors : que se passe-t-il lorsque le moment dipôlaire est variable avec le temps ?
- $\diamondsuit$  Pour notre part, nous allons nous intéresser au cas d'oscillations à la pulsation  $\omega.$

### $II \cdot 2 \cdot ii -$ échelle d'observation

- $\diamond$  L'observation se fait en un point *M* tel que  $r_M = r$ .
- $\diamond$  Il apparaît alors une première longueur naturelle : la taille *a* du dipôle oscillant.
- ♦ Mais comme le moment dipôlaire est variable, il va y avoir un couplage électro-magnétique et, donc, des ondes vont apparaître.
- $\diamondsuit$  Cela nous mène directement à la deuxième longueur naturelle :  $\lambda,$  la longueur d'onde de l'onde engendrée.

Dans tout ce qui suit, la longueur des ondes engendrée par un dipôle sera très grande devant la longueur caractéristique du dipôle.

 $\lambda \gg a$ 

♦ Nous pouvons alors définir trois zones d'observation.



## $II \cdot 2 \cdot iii - zone statique$

 $\diamondsuit$  Pour être plus juste et plus rigoureux, nous devrions dire « zone quasi-statique ».

## $\star$ voir l'approximation

 $\diamondsuit$  Représentons qualitativement une des composantes du champ à un instant en fonction de r.



- $\diamondsuit$ Insistons : la représentation précédente concerne une onde. Il faut donc voir des « vagues » qui avancent.
- $\diamond$  La zone statique correspond à la zone très proche de l'origine. C'est une zone dans laquelle les variations *spatiales* du champ sont faibles devant les variations *temporelles*.
- $\Leftrightarrow$  En fait dans cette zone, la propagation est si rapide (relativement parlant) que c'est comme si elle était instantanée.
- $\diamond$  C'est bien une zone « statique ». Enfin... « quasi-statique ».

## \* retrouver le potentiel

 $\Leftrightarrow$ Commençons par le schéma.



 $\diamondsuit$  Le potentiel en M s'écrit

$$V(M) = \frac{q}{4\pi\varepsilon_0 AM} + \frac{-q}{4\pi\varepsilon_0 BM}$$

 $\diamond$  Pour trouver AM, commençons par chercher AM<sup>2</sup>

$$AM^{2} = \overrightarrow{AM}^{2}$$
$$= \left(\overrightarrow{AO} + \overrightarrow{OM}\right)^{2}$$
$$= \overrightarrow{AO}^{2} + \overrightarrow{OM}^{2} + 2\overrightarrow{AO} \cdot \overrightarrow{OM}$$
$$= \frac{a^{2}}{4} + r^{2} - 2 \times \frac{a}{2} \times r \times \cos\theta$$

 $\diamondsuit$ Nous avons ainsi

$$AM = r \times \sqrt{1 + \frac{a^2}{4r^2} - \frac{a}{r}\cos\theta} \qquad \rightsquigarrow \qquad AM \stackrel{\text{DL1}}{=} r \times \left(1 - \frac{a}{2r}\cos\theta\right)$$

 $\diamondsuit$  Ce qui nous donne

$$\frac{1}{AM} \stackrel{\text{\tiny DL1}}{=} \frac{1}{r} \times \left(1 + \frac{a}{2r} \cos\theta\right)$$

 $\diamondsuit$  De même pour BM nous trouvons

$$\frac{1}{BM} \stackrel{\text{\tiny DL1}}{=} \frac{1}{r} \times \left(1 - \frac{a}{2r} \cos\theta\right)$$

 $\diamond$  Et ainsi

$$V(M) = \frac{1}{4 \pi \varepsilon_0} \times \left(\frac{1}{AM} - \frac{1}{BM}\right) \qquad \rightsquigarrow \qquad V(M) = \frac{q \, a \, \cos \theta}{4 \pi \, \varepsilon_0 \, r^2}$$

 $\diamondsuit$  Nous constatons que nous pouvons synthétiser cette expression sous la forme

$$V(M) = \frac{\vec{p} \cdot \vec{r}}{4 \pi \varepsilon_0 r^2} \qquad \text{avec} \qquad \vec{p} = q \, a \, \vec{u}_z$$

## $\star$ retrouver le champ $\vec{E}$

 $\diamondsuit$  Calculons simplement, puisque nous sommes dans la zone statique,

$$\vec{E} = -\overrightarrow{\operatorname{grad}} V$$

 $\diamondsuit$ Ici, étant donné l'indépendance du potentiel vis-à-vis de  $\varphi,$  nous avons

$$\overrightarrow{\operatorname{grad}} V = \frac{\partial V}{\partial r} \, \vec{u}_r + \frac{1}{r} \times \, \frac{\partial V}{\partial \theta} \, \vec{u}_\theta$$

 $\diamondsuit$  Tout calculs faits, nous trouvons

$$\vec{E} = \frac{2\,p\,\cos\theta}{4\,\pi\,\varepsilon_0\,r^3}\,\vec{u}_r + \frac{p\,\sin\theta}{4\,\pi\,\varepsilon_0\,r^3}\,\vec{u}_r$$

- ♦ Nous constatons que le champ dimine en  $\frac{1}{r^3}$ . Mais comme la densité volumique d'énergie est en  $E^2$ , elle diminue, elle, en  $\frac{1}{r^3}$ .
- $\Rightarrow$  Dans le même temps, une calotte sphérique de rayon r et d'épaisseur dr a un volume en  $4 \pi r^2 dr$ .
- ♦ Le produit des deux montre que l'énergie contenue dans une calotte sphérique diminue en  $\frac{1}{r^4}$ .
- ♦ Cela montre que l'énergie reste confinée près du dipôle. Elle (l'énergie) est prise au piège.

# $II \cdot 2 \cdot iv -$ zone de rayonnement

#### $\star$ résultat à ne pas connaître

 $\diamondsuit$ Nous admettrons que, dans la zone de rayonnement, les champs  $\vec{E}$  et  $\vec{B}$  créés par un dipôle  $\vec{p}(t)=p(t)\,\vec{u}_z$  s'écrivent

$$\vec{E}_{\rm ray} = \frac{\mu_0}{4\,\pi} \times \frac{\ddot{p}(t-r/c)}{r} \times \sin\theta \times \vec{u}_\theta \qquad \text{et} \qquad \vec{B}_{\rm ray} = \frac{\mu_0}{4\,\pi\,c} \times \frac{\ddot{p}(t-r/c)}{r} \times \sin\theta \times \vec{u}_\varphi$$

 $\diamond$  Refaisons le schéma.



- $\diamondsuit$ Nous pouvons constater que les champs respectent les symétries puis que le plan du schéma est :
  - → plan de symétrie pour les charges, sources de  $\vec{E}$ ;
  - → plan de symétrie pour les courants, sources de  $\vec{B}$ .
- $\diamond$  Dans ces conditions, pour un point du plan de symétrie (*i.e.* pour tout point du plan du shéma) :
  - →  $\vec{E}$  soit être dans le plan, donc être porté par  $\vec{u}_{\theta}$  est cohérent;
  - →  $\vec{B}$  soit être normal au plan et donc ne peut être porté que par  $\vec{u}_{\varphi}$ , ce qui est bien le cas.

## $\star$ encore une coı̈cidence pour la structure

- ♦ La présence du terme propagatif en  $t \frac{r}{c}$  montre que nous avons affaire à des ondes *divergentes*. Ce qui est rassurant vu que la source de l'onde est le dipôle lui-même.
- $\diamondsuit$  De plus nous pouvons constater que

$$\vec{B}_{\rm ray} = \frac{\vec{u}_r \wedge \vec{E}_{\rm ray}}{c}$$

L'onde rayonnée par un dipôle a la même structure locale qu'une onde plane :

- → les champs  $\vec{E}$  et  $\vec{B}$  sont transverses;
- → en chaque point  $(\vec{u}_r, \vec{E}, \vec{B})$  est un trièdre normal et direct.
- $\star$ puissance rayonnée

## **∂** expression

 $\diamondsuit$  Cherchons l'expression du vecteur de POYNTING

$$ec{\Pi}_{
m ray} = rac{ec{E}_{
m ray} \wedge ec{B}_{
m ray}}{\mu_0}$$

 $\diamondsuit$  Avec la relation de structure, ce la donne

$$\vec{\Pi}_{\rm ray} = \frac{1}{\mu_0} \times \vec{E}_{\rm ray} \wedge \left(\frac{\vec{u}_r \wedge \vec{E}_{\rm ray}}{c}\right)$$

 $\diamond$  En développant le double produit vectoriel

$$\vec{\Pi}_{\rm ray} = \frac{1}{\mu_0 c} \times \left( E_{\rm ray}^2 \vec{u}_r - \left( \vec{E}_{\rm ray} \cdot \vec{u}_r \right) \times \vec{E}_{\rm ray} \right)$$

 $\diamond$  Et comme le champ est transverse, nous avons  $\vec{E}_{ray} \cdot \vec{u}_r = 0$ , ce qui conduit à

$$\vec{\Pi}_{\rm ray} = \frac{E_{\rm ray}^{2}}{\mu_0 c} \times \vec{u}_r \qquad \rightsquigarrow \qquad \vec{\Pi}_{\rm ray} = \frac{1}{\mu_0 c} \times \frac{\mu_0^{2}}{16 \pi^2} \times \frac{\ddot{p}^2 (t - r/c)}{r^2} \times \sin^2 \theta \, \vec{u}_r$$

 $\diamond$  Et en simplifiant

$$\vec{\Pi}_{\rm ray} = \frac{\mu_0}{16 \, \pi^2 \, c} \times \ddot{p}^2 (t - r/c) \times \frac{\sin^2 \theta}{r^2} \, \vec{u}_r$$

♦ Nous voyons que la composante sur  $\vec{u_r}$  du vecteur de POYNTING est bien positive sur  $\vec{u_r}$  ce qui signifie que l'énergie se déplace bien dans le sens de  $\vec{u_r}$ , *i.e.* « fuit » le dipôle. Ce qui est plus que rassurant.

## **∂** représentation

 $\diamond$  Choisissons deux points  $M_1$  et  $M_2$  à la *même* distance  $r_0$  du dipôle mais pas dans la même direction.



♦ L'expression précédente montre que la puissance rayonnée n'est pas la même pour  $M_1$  et pour  $M_2$ . ♦ Représentons, à l'échelle, le vecteur de POYNTING pour différente direction.



♦ Cette représentation est un peu lourde, confuse. Ne représentons que la position de la pointe du vecteur de POYNTING.



 $\diamondsuit$  Ce qui précède est appelé le  $lobe \ d'émission$  du dipôle.

- $\diamond$  Nous pouvons constater que, qualitativement :
  - $\rightarrow$  un dipôle ne rayonne pas dans sa direction ;
  - $\clubsuit$  un dipôle rayonne dans son plan médiateur.
- ◇ Pour l'image, nous dirons que le dipôle rayonne « en crabe » : il faut se mettre sur son flanc pour voir de la lumière arriver.

## $\star$ puissance rayonnée totale

- $\diamond$  Calculons la puissance rayonnée à travers une sphère  $\mathcal{S}$  de rayon  $r_0$ .
- ♦ La puissance rayonnée n'est autre que le flux du vecteur de POYTING, ce qui donne

$$\mathscr{P} = \Phi_{\Pi} \qquad \rightsquigarrow \qquad \mathscr{P} = \oint_{P \in \mathcal{S}} \vec{\Pi}_{ray}(P) \cdot d\vec{S}_{P}$$

 $\diamond$  Comme tous les points *P* appartiennent à la sphère de rayon  $r_0$ , nous avons  $r_P = C^{te} = r_0$ .

$$\vec{\Pi}_{\rm ray} = \frac{\mu_0}{16 \,\pi^2 \, c} \times \frac{\ddot{p}^2 (t - r_0/c)}{r_0^2} \times \sin^2 \theta \, \vec{u}_r$$

♦ Pour alléger les notations, réécrivons le vecteur de POYNTING sous la forme suivante

$$\vec{\Pi}_{\rm ray} = \kappa_0 \times \sin^2 \theta \, \vec{u}_r \quad \text{avec} \quad \kappa_0 \stackrel{\text{not}}{=} \frac{\mu_0}{16 \, \pi^2 \, c} \times \frac{\ddot{p}^2 (t - r_0 / c)}{r_0^2}$$

 $\diamond$  Nous avons ainsi, avec  $d\vec{S}_P = dS_P \vec{u}_r$ 

 $\diamondsuit$  Or, en sphérique, le déplacement élémentaire à r fixé nous permet de trouver la surface élémentaire associée

$$\mathrm{d}\vec{r}_{\mathrm{sph\acute{e}}} = \vec{0} + r\,\mathrm{d}\theta\,\vec{u}_{\theta} + r\,\sin\theta\,\mathrm{d}\varphi\,\vec{u}_{\varphi} \qquad \rightsquigarrow \qquad \mathrm{d}S_P = r^2\,\sin\theta\,\mathrm{d}\theta\,\mathrm{d}\varphi$$

 $\diamondsuit$ Nous avons donc, en remplaçant

$$\mathscr{P} = \kappa_0 \times \oiint_{P \in \mathcal{S}} \sin^2 \theta \, r_0^2 \, \sin \theta \, \mathrm{d}\theta \, \mathrm{d}\varphi$$

 $\diamondsuit$ Compte-tenu des bornes d'intégration pour  $\theta$  et  $\varphi,$  ce la donne

$$\mathscr{P} = \kappa_0 r_0^2 \times \left( \int_0^{\pi} \sin^3 \theta \, \mathrm{d}\theta \right) \times \left( \int_0^{2\pi} \, \mathrm{d}\varphi \right)$$

 $\Rightarrow$  Passons le calcul technique (basé sur la relation  $\sin^3 \theta = (1 - \cos^2 \theta) \sin \theta$ )

$$\mathscr{P} = \kappa_0 \, {r_0}^2 \times \frac{4}{3} \times 2 \, \pi$$

 $\diamond$  Reremplaçons  $\kappa_0$  par son expression

$$\mathscr{P} = \frac{\mu_0}{16 \,\pi^2 \, c} \times \frac{\ddot{p}^2 (t - r_0/c)}{r_0^2} \times r_0^2 \times \frac{4}{3} \times 2 \,\pi$$

 $\diamond$  Et nous obtenons, en simplifiant

$$\mathscr{P} = \frac{\mu_0}{6 \,\pi \, c} \times \ddot{p}^2 (t - r_0/c)$$

 $\diamondsuit$  N'oublions pas d'interpréter ! Ce résult at montre deux choses :

- → que la puissance est propagative (cf. terme en t r/c);
- → que la puissance est constante (car  $\mathscr{P}$  ne dépend pas de r).
- $\diamondsuit$  Mais la conclusion principale c'est quand même celle-ci

Un atome qui se déforme engendre un champ  $(\vec{E},\vec{B})$  qui rayonne de l'énergie.

# $II{\cdot}3$ – Atome dans un champ : polarisation électronique

# $II \cdot 3 \cdot i - modèle de l'électron élastiquement lié$

♦ Considérons un atome isolé (cf. hypothèse du milieu peu dense).



♦ Si cet atome est plongé dans un champ électrique, le noyau va avoir tendance a aller dans la direction du champ alors que le nuage électronique va plutôt avoir tendance à aller dans l'autre sens.



- ♦ Le résultat est que le barycentre des charges positives et négatives ne coïncident plus : un dipôle est né.
- ♦ Si le champ électrique oscille, alors le dipôle oscillera aussi et rayonnera de l'énergie, c'est ce que nous allons étudier.
- $\diamond$  Pour l'instant, concentrons-nous sur le passage  $\vec{E}_{\text{ext}} \longrightarrow \vec{p}_{\text{créé}}$ .

## $\star$ description

- ◇ Dans tout ce qui suit, il ne faudra pas oublier que nous regardons des phénomènes à l'échelle atomique, *i.e.* régit par la mécanique quantique.
- $\diamondsuit$  En d'autres termes ce qui suit est un modèle classique d'un comportement quantique.
- $\diamondsuit$  Nous allons nous intéresser à ce qui se passe pour l'atome dans son référentiel barycentrique.



- ♦ Comme chaque nucléon (proton et neutron) est environ 2000 fois plus massique qu'un électron et qu'il y a plus de nucléons que d'électrons, nous pouvons faire l'approximation justifiée que le noyau est immobile dans le référentiel barycentrique.
- $\diamond$ Nous allons considérer un électron, ou plutôt le barycentre du nuage associé de telle sorte qu'au repos, sans excitation extérieure, sa position soit

$$\vec{r}_{
m \acute{eq}} = \vec{0}$$

 $\diamond$  Insistons : l'électron n'est *pas* en r = 0 (sinon gare aux divergence des forces électrostatiques) mais son centre d'inertie l'est. Nuance.

## $\star$ modélisation des phénomènes en terme de forces

## I force de rappel

- ♦ Pour ce que nous allons désormais appeler abusivement « l'électron » en lieu et place du « nuage électronique », la position  $\vec{r}_{\text{éq}} = \vec{0}$  est une position d'équilibre *stable*.
- $\diamondsuit$ Si tel n'était pas le cas, l'électron s'éloigne rait de l'atome créant ainsi un ion.
- $\Rightarrow$  Il y a donc un mécanisme de *rappel* de l'électron vers sa position au repos. Nous allons *modéliser* cette action par une force de rappel élastique du type

$$\vec{f}_{\text{rappel}} = -\kappa \, \vec{r}$$

 $\Leftrightarrow \kappa$  est la « constante » de raideur de la force de rappel. Pour des raisons pratiques qui seront plus claires dans la suite, nous allons noter cette force sous la forme

$$\vec{f}_{\rm rappel} = -m\,\omega_0{}^2\,\vec{r}$$

- $\Leftrightarrow m$  est la masse d'un électron et  $\omega_0$  une pulsation caractéristique. Une pulsation propre en fait.
- ♦ Insistons : même si la force électrostatique est en  $\frac{1}{r}$  et devrait, donc, diverger en r = 0, ici, avec la force de rappel élastique, nous faisons que traduire la stabilité de l'électron soumis à toutes les forces qui agissent sur lui.
- ♦ Énergétiquement, une position d'équilibre stable correspond à un minimum d'énergie dont le développement de TAYLOR fait apparaître un terme en  $r^2$ , terme qui, traduit avec la notion de force, fait apparaître une dépendance en r.

## I force de frottement

- $\diamondsuit$ Considérons l'électron qui bouge.
- $\diamondsuit$ Nous savons que cela va correspondre, en fait, à un dipôle fonction du temps, donc à un dipôle qui rayonne.
- ♦ Or le rayonnement, nous l'avons vu au-dessus, fait obligatoirement diminuer l'énergie du dipôle.
- $\diamondsuit$  Pour traduire cette perte énergétique due au rayonnement dipôlaire, nous allons introduire une force de frottement

$$\vec{f}_{\text{perte}} = -h \, \vec{v}$$

 $\diamondsuit$ Pour des raisons qui ne vont pas tarder à arriver, notons directement cette force sous la forme

$$\vec{f}_{
m perte} = -\frac{m}{\tau} \, \vec{v}$$

◇ Insistons : il n'y a pas de frottement entre l'électron et le noyau ou autre chose. Tout cela se passe au niveau atomique et en terme quantique. Cette force « de frottement » est bien plus un « machin » pour faire en sorte que l'énergie diminue.

## i résumé

La stabilité de l'atome et la perte énergétique par rayonnement peuvent se traduire par l'existence de deux forces  $\vec{f}_{\rm rappel} = -m \omega_0^2 \vec{r}$  et  $\vec{f}_{\rm perte} = -\frac{m}{\tau} \vec{v}$ Ce modèle est appelé modèle de l'électron élastiquement lié.

# $\operatorname{II} \cdot 3 \cdot ii$ – moment dipôlaire créé

## $\star$ situation

 $\diamond$  Rappelons la situation :

- → un champ extérieur  $(\vec{E}_{ext}, \vec{B}_{ext})$  engendre un moment dipôlaire  $\vec{p}(t)$ ;
- → le dipôle oscillant rayonne un champ  $(\vec{E}_{ray}, \vec{B}_{ray})$ ;
- $\rightarrow$  le champ rayonné ne perturbe pas le champ extérieur (milieu peu dense).

 $\diamondsuit$  Cela peut se résumer par le schéma suivant.



- $\diamond$  Nous allons nous restreindre à l'étude des conséquences d'une OPPMPR pour  $\vec{E}$ . Une OPPMPR est une OPPM Polarisée Rectilignement.
- $\diamond$  Dans le cas d'une onde autre que polarisée rectilignement, nous pouvons utiliser le principe de superposition d'autant plus facilement que le modèle que nous avons adopté est bien linéaire.

## $\star$ moment dipolaire

 $\diamondsuit$  Dans la modélisation que nous avons adoptée, le moment dipôlaire est dû au déplacement d'un seul électron.

Dans le cadre du modèle de l'électron élastiquement lié, le moment dipôlaire s'écrit

 $\vec{p}(t) = -e \, \vec{r}(t)$ 

## $\star$ approximation

## énoncé

Dans le cadre du modèle de l'électron élastiquement lié, l'électron est considéré comme non relativiste. Cela se traduit par

 $v \ll c$ 

## $\ensuremath{\mathfrak{O}}$ conséquence 1 : un champ $\ensuremath{\vec{E}}$ uniforme

Dans le cadre du modèle de l'électron élastiquement lié et non relativiste, le champ électrique est uniforme à l'échelle de l'atome.

♦ Schématiquement, cela signifie que la longueur d'onde de l'onde électrique est grande devant la taille de l'atome.



 $\diamond$  L'onde électrique s'écrit

$$\underline{\vec{E}}_{\text{ext}} = \vec{E}_0 \,\mathrm{e}^{\,\mathrm{j}\,(\omega\,t - \vec{k}\cdot\vec{r})}$$

- ♦ Rappelons que le fait d'avoir une amplitude  $\vec{E}_0$  réelle (vs. complexe) implique que la polarisation est bien rectiligne.
- $\diamondsuit$  Comparons les deux termes de phase

$$\frac{k\,r}{\omega\,t} \equiv \frac{k}{\omega} \times \frac{r}{T} \quad \rightsquigarrow \quad \frac{k\,r}{\omega\,t} \equiv \frac{1}{c} \times v \qquad \rightsquigarrow \qquad \frac{k\,r}{\omega\,t} \equiv \frac{v}{c} \ll 1$$

 $\diamond$  Nous pouvons donc négliger le terme en  $\vec{k} \cdot \vec{r}$  devant le terme en  $\omega t$ .

- ♦ Cela signifie que la variation *spatiale* de l'onde est négligeable devant la variation *temporelle*. En d'autres termes, nous retrouvons bien le fait que l'onde est uniforme à l'échelle atomique.
- $\diamondsuit$ Nous pouvons toutefois le montrer en reprenant les ODG

$$\frac{k\,r}{\omega\,t} \equiv \frac{k}{\omega\,T} \times r \quad \rightsquigarrow \quad \frac{k\,r}{\omega\,t} \equiv \frac{k}{2\,\pi}\,r \qquad \rightsquigarrow \qquad \frac{k\,r}{\omega\,t} \equiv \frac{r}{\lambda}$$

 $\diamondsuit$  Or, nous venons de prouver que

$$\frac{k r}{\omega t} \ll 1 \qquad \rightsquigarrow \qquad \frac{r}{\lambda} \ll 1$$

♦ Finalement, si l'onde qui arrive sur l'atome s'écrit  $\underline{\vec{E}_{ext}} = \vec{E}_0 e^{j(\omega t - \vec{k} \cdot \vec{r})}$ , l'atome, lui, ne « voit » que le champ

$$\underline{\vec{E}_{\text{ext}}} = \vec{E}_0 \,\mathrm{e}^{\mathrm{j}\,\omega\,t}$$

## **3** conséquence 2 : action de $\vec{B}$ négligeable

Dans le cadre du modèle de l'électron élastiquement lié non relativiste, l'action du champ magnétique  $\vec{B}$  est négligeable devant l'action du champ électrique  $\vec{E}$ .

♦ En effet, la force que subit l'électron dans ce modèle est la force de LORENTZ qui s'écrit

$$ec{f}_{
m Lo} = -e \, \left( ec{E}_{
m ext} + ec{v} \wedge ec{B}_{
m ext} 
ight)$$

 $\diamondsuit$  En comparant les deux actions, nous avons, en ODG

$$\frac{\|\vec{v} \wedge \vec{B}_{\text{ext}}\|}{\|\vec{E}_{\text{ext}}\|} \equiv \frac{v B_{\text{ext}}}{E_{\text{ext}}}$$

 $\diamondsuit$  Et comme le champ extérieur correspond à une onde dans le vide, nous avons

$$B_{\text{ext}} \equiv \frac{E_{\text{ext}}}{c} \qquad \rightsquigarrow \qquad \frac{\|\vec{v} \wedge \vec{B}_{\text{ext}}\|}{\|\vec{E}_{\text{ext}}\|} \equiv \frac{v}{c} \ll 1$$

 $\diamondsuit$  Ce qui prouve le résultat.

## $\star$ PFD

 $\diamondsuit$  Le PFD appliqué à l'électron s'écrit, compte-tenu des approximations

$$m \frac{\mathrm{d}^2 \vec{r}}{\mathrm{d}t^2}(t) = \overrightarrow{\mathrm{poids}} + \left(-m \,\omega_0^2 \,\vec{r}(t)\right) + \left(-\frac{m}{\tau} \,\vec{v}(t)\right) + \left(-e\right) \,\left(\vec{E}_{\mathrm{ext}}(t) + \vec{\nu} \wedge \vec{B}_{\mathrm{ext}}\right)$$

 $\diamondsuit$  Ce qui donne, en divisant par m,

$$\frac{d^2 \vec{r}}{dt^2}(t) + \frac{1}{\tau} \vec{v}(t) + \omega_0^2 \vec{r}(t) = -\frac{e}{m} \vec{E}_{\text{ext}}(t)$$

 $\diamond$  Passons en notation complexe

$$\frac{\mathrm{d}^2 \vec{\underline{r}}}{\mathrm{d}t^2}(t) + \frac{1}{\tau} \frac{\mathrm{d} \vec{\underline{r}}}{\mathrm{d}t}(t) + \omega_0^2 \vec{\underline{r}}(t) = -\frac{e}{m} \vec{E}_0 e^{\mathrm{j}\,\omega\,t}$$

 $\diamond$  Ce qui donne

© Matthieu Rigaut

$$-\omega^2 \underline{\vec{r}}(t) + \frac{j\omega}{\tau} \underline{\vec{r}}(t) + \omega_0^2 \underline{\vec{r}}(t) = -\frac{e}{m} \vec{E}_0 e^{j\omega t}$$

 $\diamond$  Et puis, avec  $\underline{\vec{r}}(t) = \underline{\vec{r}_0} e^{j \omega t}$ 

$$\underline{\vec{r_0}} = \frac{-\frac{e}{m}}{\omega_0^2 - \omega^2 + \frac{j\,\omega}{\tau}} \times \vec{E_0}$$

## II·3·*iii* – puissance rayonnée : diffusion RAYLEIGH

## $\star$ considérations numériques pour l'atmosphère

- ♦ Prenons le cas de l'atmosphère, milieu peu dense.
- $\diamondsuit$  L'onde excitatrice est la lumière solaire telle que

$$\omega \sim 2,5.10^{15} \text{ rad.s}^{-1} \longrightarrow 5.10^{15} \text{ rad.s}^{-1}$$

 $\diamondsuit$ Les molécules principales composant l'atmosphère sont O2 et N2, sensibles à l'UV  $\lambda_0 \sim 80$  nm. Cela donne

$$\omega_0 \sim 2.10^{16} \text{ rad.s}^{-1}$$

 $\diamondsuit$  Enfin, pour  $\mathrm{O}_2$  et  $\mathrm{N}_2,$  la constante de temps vaut environ

$$\tau \sim 10^{-7} \mathrm{s} \longrightarrow 10^{-9} \mathrm{s}$$

 $\diamondsuit$  Le dénominateur de  $\underline{\vec{r_0}}$  est donc tel que

$$\underbrace{\omega_{0}^{2}}_{4.10^{32}} - \underbrace{\omega_{1.10^{30}}^{\not Z}}_{4.10^{30}} + \underbrace{\frac{j\,\omega}{\tau}}_{10^{22}} \sim \omega_{0}^{2}$$

 $\diamond$  Finalement il reste

$$\underline{\vec{r}_0} = -\frac{e}{m\,\omega_0^2} \times \vec{E}_0 \qquad \text{et} \qquad \underline{\vec{p}_0} = +\frac{e^2}{m\,\omega_0^2} \times \vec{E}_0$$

⇒ Remarque. Le facteur de qualité pour un tel oscillateur vaut  $Q = \omega_0 \times \tau \sim 10^8$ , ce qui est considérable. Cela correspond à 2 Q oscillations, *i.e.* à des trains d'onde le longueur  $\ell_c \sim 2 Q \lambda \sim 1$  km... Il est clair que le modèle est naïf sur ce point.

#### $\star$ puissance rayonnée

 $\diamond$  Nous avons trouvé plus haut que la puissance rayonnée à travers une sphère de rayon r s'écrit

$$\mathscr{P} = \frac{\mu_0}{6 \,\pi \, c} \times \ddot{p}^2 (t - r/c)$$

 $\diamondsuit$  En valeur moyenne cela donne

$$\langle \mathscr{P} \rangle = \frac{\mu_0}{6 \pi c} \times \frac{1}{2} \operatorname{Re} \left( \underline{\ddot{\vec{p}}} \cdot \underline{\ddot{\vec{p}}}^{\star} \right) \quad \text{avec} \quad \underline{\ddot{\vec{p}}} = -\omega^2 \underline{\vec{p}}$$

 $\diamond$  Nous avons ainsi

$$\left\langle \mathscr{P} \right\rangle = \frac{\mu_0}{12 \,\pi \, c} \times \left( -\frac{\omega^2 \, e^2}{m \, \omega_0^2} \times \vec{E}_0 \right)^2$$

 $\diamondsuit$ Ce qui donne

$$\left\langle \mathscr{P} \right\rangle = \frac{\mu_0 e^4}{12 \pi c m^2} \times E_0^2 \times \left(\frac{\omega}{\omega_0}\right)^4$$

## ★ réécriture

 $\diamond$ Notons  $I_0$  l'intensité moyenne du vecteur de POYNTING de l'onde incidente. Pour une OPPM, nous avons déjà montré que

$$I_0 = \frac{1}{2} \times \varepsilon_0 E_0^2 \times c \quad \rightsquigarrow \quad I_0 = \frac{1}{2\mu_0 c} \times E_0^2 \quad \rightsquigarrow \quad E_0^2 = 2\mu_0 c I_0$$

 $\diamond$  Remplaçons dans l'expression de  $\langle \mathscr{P} \rangle$ 

$$\langle \mathscr{P} \rangle = \frac{\mu_0 e^4}{12 \pi c m^2} \times 2 \mu_0 c I_0 \times \left(\frac{\omega}{\omega_0}\right)^4$$

 $\diamond$  Finalement

$$\langle \mathscr{P} \rangle = I_0 \times \frac{\mu_0^2 e^4}{6 \pi m^2} \times \left(\frac{\omega}{\omega_0}\right)^4 \stackrel{\text{not}}{=} I_0 \times \sigma \times \left(\frac{\omega}{\omega_0}\right)^4$$

- ♦ Le coefficient  $\sigma \stackrel{\text{not}}{=} \frac{\mu_0^2 e^4}{6 \pi m^2}$  est un paramètre phénoménologique qui ne dépend que de l'atome considéré.
- ♦ De plus comme  $\omega = \frac{2 \pi c}{\lambda}$ , nous pouvons réécrire la puissance moyenne rayonnée sous la forme

$$\left\langle \mathscr{P} \right\rangle = I_0 \times \sigma \times \left(\frac{\lambda_0}{\lambda}\right)^4 \propto \frac{1}{\lambda^4}$$

## \* interprétation

La *diffusion de* RAYLEIGH est la diffusion lié au rayonnement dipôlaire des molécules excitées par une onde incidente.

♦ L'expression de la puissance rayonnée  $\langle \mathscr{P} \rangle = I_0 \times \sigma \times \left(\frac{\lambda_0}{\lambda}\right)^4 \propto \frac{1}{\lambda^4}$  montre que celle-ci est propor-

tionnelle à l'éclairement incident. Comme l'éclairement n'est autre que de la puissance surfacique, ce résulat paraît assez naturel et logique.

 $\diamondsuit$  Mais il y a une dépendance fonctionnelle en plus en  $\lambda...$ 

La puissance rayonnée par diffusion de RAYLEIGH est proportionnelle à  $\frac{1}{\sqrt{4}}$ 

 $\diamond$  Comme  $\lambda_{\text{rouge}} \sim 2 \lambda_{\text{bleu}}$  nous avons

$$\mathscr{P}_{\mathrm{Rayleigh}}(\mathrm{rouge}) = rac{\mathscr{P}_{\mathrm{Rayleigh}}(\mathrm{bleu})}{16}$$

## $II \cdot 3 \cdot iv -$ couleur du ciel

- $\star$  en plein jour par temps dégagé
- modélisation
- ♦ Considérons un bonhomme recevant de la puissance de la part du Soleil.



- $\Rightarrow$  Entre le Soleil et la Terre, la puissance surfacique diminue en  $\frac{1}{r^2}$  du seul fait de la distance.
- $\diamond$  En revanche, à travers l'atmosphère, le rayonnement est en partie diffusé par les molécules, ce qui fait que le bonhomme ne perçoit pas *toute* la puissance provenant du Soleil.

## ilan de puissance

♦ Faisons un bilan de puissance électromagnétique pour une tranche d'atmosphère d'épaisseur  $\delta x$  et de section S entre t et t + dt.



♦ Comme tout bilan, nous pouvons écrire

VARIATION dans le temps =  $\acute{E}CHANGE$  à travers la surface +  $CR\acute{E}ATION$  en volume

 $\diamondsuit$  Ici, nous considérons une situation stationnaire donc

VARIATION dans le temps = 0

 $\diamondsuit$  De plus ce n'est l'atmosphère qui va $\mathit{cr\acute{e}r}$  de l'énergie, donc

CRÉATION EN VOLUME = 0

 $\diamond$  Il reste

ÉCHANGE à travers la surface = 0

 $\diamond$  Nous avons ici 3 termes d'échange :

- → la puissance  $\mathscr{P}(x) S$  qui entre;
- → la puissance  $-\mathscr{P}(x+\delta x) S$  qui sort;
- → la puissance rayonnée  $-\delta \mathscr{P}_{ray}$  qui sort.
- $\diamond$ La puissance rayonnée n'est autre que la somme de toutes les puissances rayonnées par chacun des dipôles. En notant  $n^*$  leur densité, cela donne

$$\delta \mathscr{P}_{\mathrm{ray}} = \mathrm{d}N \times \mathscr{P}_{\mathrm{ray par 1 dip}} \qquad \rightsquigarrow \qquad \delta \mathscr{P}_{\mathrm{ray}} = n^{\star} S \, \delta x \times \mathscr{P}_{\mathrm{ray par 1 dip}}$$

 $\diamondsuit$ Nous avons trouvé précédemment que

$$\mathscr{P}_{\mathrm{ray \ par \ 1 \ dip}} = \mathscr{P}(x) \times \sigma \times \left(\frac{\omega}{\omega_0}\right)^4$$

 $\diamondsuit$  En regroupant, cela donne

$$\mathscr{P}(x) S - \mathscr{P}(x + \delta x) S - \mathscr{P}(x) \times \sigma \times \left(\frac{\omega}{\omega_0}\right)^4 \times n^* S \, \delta x = 0$$

 $\diamondsuit$  En réarrange ant et en faisant tendre  $\delta x$  vers 0

$$\frac{\mathscr{P}(x) - \mathscr{P}(x + \delta x)}{\delta x} + \mathscr{P}(x) \times \sigma \times \left(\frac{\omega}{\omega_0}\right)^4 \times n^* = 0 \qquad \rightsquigarrow \qquad \frac{\mathrm{d}\mathscr{P}}{\mathrm{d}x}(x) + n^* \sigma \left(\frac{\omega}{\omega_0}\right)^4 \times \mathscr{P}(x) = 0$$

 $\diamondsuit$ Il s'agit là d'une équation différentielle que nous pouvons réécrire sous la forme

$$\frac{\mathrm{d}\mathscr{P}}{\mathrm{d}x}(x) + \frac{1}{\ell(\omega)} \times \mathscr{P}(x) = 0 \qquad \text{avec} \qquad \frac{1}{\ell(\omega)} = n^{\star} \sigma \left(\frac{\omega}{\omega_0}\right)^4$$

 $\diamond$  La solution est alors connue

$$\mathscr{P}(x) = \mathscr{P}_0 e^{-x/\ell(\omega)}$$

 $\diamondsuit$  Ici, nous avons affaire à une atténuation de l'onde mais sans absorption.

## **∂** un ciel bleu

 $\diamondsuit$  Regardons ce qui se passe pour un observateur sur le sol.



- $\Rightarrow$  Si l'observateur regarde le rayonnement solaire en face<sup>4</sup>, il verra à peu près toutes les radiations étant donné que la couche atmosphérique n'est pas très épaisse.
- $\diamond$  En revanche s'il regarde à côté du Soleil, il verra quand même de la lumière. Cela peut paraître étrange sur le papier, mais c'est extrêmement naturel en fait.
- $\diamondsuit$  En effet, en regardant à côté, il ne voit que les rayonnements qui proviennent des molécules de l'atmosphère.
- ◊ Or ce rayonnement est d'autant plus intense que la longueur d'onde est courte : il y a plus de violet et de bleu diffusé que de rouge.
- $\diamondsuit$  C'est la raison pour laquelle en regardant le ciel, mais pas dans la direction du Soleil, il nous apparaît bleu.
- ♦ Notons que si cette diffusion RAYLEIGH n'existait pas, alors, en plein jour, en regardant à côté du Soleil, nous ne verrions que du « noir », ça serait « la nuit ».

## Ə un ciel polarisé

- ♦ Regardons d'un peu plus près le rayonnement RAYLEIGH de l'atmosphère.
- ♦ La lumière solaire n'est pas polarisée, ce qui signifie que (cf. schéma ci-dessous), le rayonnement solaire est porté par  $\vec{u}_y$  et  $\vec{u}_z$ .



- $\diamond$  Les dipôles engendrés sont donc des dipôles suivant  $\vec{u}_y$  et  $\vec{u}_z$ .
- $\diamond$  Sauf qu'un dipôle ne rayonne pas dans sa direction. Sauf que l'observateur est dans la direction  $\vec{u}_y$ .
- $\diamond$ Cela signifie que l'observateur voit essentiellement le rayonnement dû aux dipôles en  $\vec{u}_z$ : la lumière diffusée est polarisée.
- $\diamond$  En pratique, la lumière n'est pas totalement polarisée car elle ne provient pas exclusivement de la zone représentée sur le schéma précédent.
- ♦ Ce phénomène est utilisé en photographie où l'utilisation de filtre sélectionnant la bonne polarisation permet de « bleuir » le ciel directement lors de la prise de vue. Maintenant, avec les logiciels de traitement d'image, ce n'est plus très utile.

La diffusion RAYLEIGH permet de polariser partiellement la lumière.

## **∂** un soleil couchant

 $\diamond$  Numériquement, nous avons

## $\ell$ (bleu) = 560 km et

 $\ell$ (rouge) = 4300 km

4. Ce qui est très dangereux et risque de causer des lésions irréversibles à la rétine.

♦ Cela signifie que lorsque nous regardons le soleil à travers une grande épaisseur d'atmosphère (ce qui arrive au lever et au coucher du Soleil), nous percevons essentiellement les radiations rouges, car elles ont été moins diffusées.



- ♦ C'est d'ailleurs la raison pour laquelle quand la Lune se trouve juste dans l'alignement de la Terre et du Soleil<sup>5</sup>, la Terre cache le Soleil, mais la réfraction de la lumière solaire par l'atmosphère permet quand même à la Lune d'être éclairée.
- ♦ Sauf qu'elle sera éclairée par de la lumière qui aura traversé de grandes épaisseurs d'atmosphère, de la lumière composée essentiellement de radiation rouges. La Lune sera rousse.

## $\star$ en plein jour par temps légèrement couvert

 $\diamondsuit$  Imaginons un petit nuage.



- ♦ Un nuage, c'est un brouillard dans le ciel. Autrement dit, c'est constitué de fines gouttellettes d'eau.
- $\diamond$  Ces gouttellettes d'eau absorbent indifféremment toutes les longueurs d'onde et les réemettent dans toutes les directions.
- $\diamondsuit$  C'est la raison pour laquelle le nuage paraît blanc.

## $\star$ en plein jour par temps couvert

- $\diamondsuit$  Pourquoi, parfois, un nuage semble gris ?
- ♦ Non pas parce que, comme le pense les jeunes enfants, il est « sale », mais tout simplement parce qu'il est dans l'ombre d'un autre nuage!

<sup>5.</sup> Ce n'est ni plus ni moins que le phénomène d'éclipse de Lune.



- ◇ Il y a un autre cas de nuages gris, ce sont les nuages si gros qu'ils absorbent de manière très significative toute la lumière qu'ils reçoivent.
- $\diamondsuit$  Des nuages aussi gros, ce n'est pas vraiment bon signe en terme météorologique...

## $\star$ la nuit

- $\diamond$  Une (vieille) question est « Pourquoi la nuit est-elle noire? »
- $\diamondsuit$  En effet, imaginons une étoile, au loin.



- ♦ La puissance qu'elle émet diminue, du fait de la distance en  $\frac{1}{r^2}$ .
- ♦ La puissance *totale* reçue de la part de toutes les étoiles s'écrit donc, en notant  $n^*(r)$  la densité d'étoile à la distance r de la Terre, et en sommant sur les calottes sphériques

$$\mathscr{P}_{\rm tot} = \int_0^\infty n^\star(r) \times \frac{\mathscr{P}_0}{r^2} \times \mathrm{d}\tau$$

 $\diamondsuit$  Or, le volume d'une calotte sphérique de rayon r et d'épaisseur dr s'écrit

$$\mathrm{d}\tau = 4\,\pi\,r^2\,\mathrm{d}r \quad \rightsquigarrow \quad \mathscr{P}_{\mathrm{tot}} = \int_0^\infty n^\star(r) \times \frac{\mathscr{P}_0}{r^2} \times 4\,\pi\,r^2\,\mathrm{d}r \quad \rightsquigarrow \quad \mathscr{P}_{\mathrm{tot}} = 4\,\pi\,\mathscr{P}_0 \times \int_0^\infty n^\star(r)\,\mathrm{d}r$$

 $\diamondsuit$  En faisant l'hypothèse raisonnable que la densité des étoiles est à peu près uniforme dans l'univers, nous avons

$$n^{\star}(r) \sim n_0^{\star} \qquad \rightsquigarrow \qquad \mathscr{P}_{\mathrm{tot}} = \infty$$

- ◊ Or, n'importe quelle personne qui s'est balladé un jour la nuit a pu constaté qu'elle n'était pas éblouie par la puissance lumineuse reçue de la part des étoiles.
- ♦ Ce paradoxe a longtemps chagriné les physiciens.
- ◇ Pour le lever, c'est très simple. Ce calcul (juste) associé à l'expérience commune d'une ballade nocture, montre que, contrairement à l'intuition, la densité d'étoile n'est **pas** uniforme dans l'univers.
- ♦ Nous pouvons même aller plus loin en remarquant que la puissance reçue est finie. Cela prouve que la densité d'étoile diminue très vite avec la distance (du moins plus vite qu'en 1/r).
- ♦ En clair, il y a vraiment très peu d'étoiles dans l'univers. Très peu... par rapport à ce qu'il pourrait contenir.

# III – Exemples

# III·1 – Conducteur électrique

## $III \cdot 1 \cdot i - modèle de DRÜDE$

Le *modèle de* DRÜDE est un modèle permettant de décrire l'évolution des électrons libres dans un conducteur.

- $\diamond$  Dans un conducteur, il y a trois types de charges :
  - $\rightarrow$  les noyaux atomiques, chargés positivement, immobiles;
  - $\Rightarrow$  les électrons de valence et de cœur, chargés négativement, immobiles aussi;
  - $\Rightarrow$ les électrons libres, chargés négativement, mobiles.
- ◊ Quand un courant circule dans un conducteur, l'expérience montre le conducteur s'échauffe via l'effet JOULE.
- ♦ Cela montre que les électrons, responsables du courant électrique, perdent une partie de leur énergie au profit du réseau cristallin.
- $\diamondsuit$ Nous allons modéliser cette perte énergétique par une force de frottement que nous noterons

$$\vec{f} = -h \, \vec{v} \qquad \rightsquigarrow \qquad \vec{f} \stackrel{\text{not}}{=} -\frac{m}{\tau} \, \vec{v}$$

 $\diamondsuit \tau$  s'interprète comme la durée entre deux interactions successives entre l'électron libre et le réseau cristallin.

Pour un bon conducteur, la durée entre deux interactions électron – réseau cristallin est de l'ordre de

 $\tau \sim 10^{-14} \ {\rm s}$ 

◊ N'oublions pas que l'électron va très vite (à cause de l'agitation thermique) entre deux interactions. En revanche, globalement, sur une « longue » durée, il va plutôt lentement.



# $III \cdot 1 \cdot ii - mise en equation - approximation$

 $\diamondsuit$ Considérons un électron libre non relativiste et écrivons le PFD. Cela donne

$$m \, \frac{\mathrm{d} \vec{v}}{\mathrm{d} t}(t) = \overrightarrow{\mathrm{poids}} + \left(-e\right) \, \left(\vec{E}_{\mathrm{ext}} + \vec{v} \wedge \vec{B}_{\mathrm{ext}}\right) + \left(-\frac{m}{\tau} \, \vec{v}\right)$$

 $\diamondsuit$ Comme l'électron est non relativiste, nous avons, pour une onde électromagnétique

$$B_{\text{ext}} \sim \frac{E_{\text{ext}}}{c} \qquad \rightsquigarrow \qquad \|\vec{E}_{\text{ext}}\| \gg \|\vec{v} \wedge \vec{B}_{\text{ext}}\|$$

♦ De plus, pour les raisons que nous avons montré lors du modèle de l'électron élastiquement lié, que l'hypothèse « électron non relativiste » impliquait que nous pouvions considérer l'onde électrique homogène à l'échelle de l'électron.  $\diamondsuit$ Nous arrivons ainsi à

$$\frac{\mathrm{d}\vec{v}}{\mathrm{d}t}(t) + \frac{1}{\tau}\vec{v}(t) = -\frac{e}{m}\vec{E}(t) \qquad \text{avec} \qquad \vec{E}(t) = \Re e\left(\underline{\vec{E}}(t)\right) \quad \text{où} \quad \underline{\vec{E}}(t) = \underline{\vec{E}_0} e^{\mathrm{i}\,\omega\,t}$$

## III·1·*iii* – conductivité complexe

#### $\star$ expression

 $\diamondsuit$ Rappelons que la conductivité  $\gamma$  est définie par la relation

$$\vec{j} = \gamma \vec{E}$$

 $\diamond$  La densité de courant électrique s'écrit, en notant n la densité particulaire d'électron libre

$$\vec{j} = \ll n \, q \, \vec{v} \gg \qquad \vec{j} = -e \, n \, \vec{v}$$

 $\diamondsuit$  Nous allons directement rechercher cette densité de courant en notation complexe

$$\vec{j}(t) = \vec{j}_0 e^{i\omega t}$$

 $\diamondsuit$  Passons le PFD en notation complexe

$$\frac{\mathrm{d}\vec{\underline{v}}}{\mathrm{d}t}(t) + \frac{1}{\tau}\,\vec{\underline{v}}(t) = -\frac{e}{m}\,\vec{\underline{E}}(t)$$

 $\diamondsuit$  Utilisons des notations usuelles

$$\underline{\vec{r}}(t) = \underline{\vec{r}_0} e^{i\omega t} ; \qquad \underline{\vec{v}}(t) = \underline{\vec{v}_0} e^{i\omega t} \quad \text{et} \quad \underline{\vec{E}}(t) = \underline{\vec{E}_0} e^{i\omega t} ;$$

 $\diamondsuit$ Nous arrivons alors à

$$\left(\mathrm{i}\,\omega + \frac{1}{\tau}\right)\,\underline{\vec{v_0}}\,\mathrm{e}^{\,\mathrm{i}\,\omega\,t} = -\frac{e}{m}\,\underline{\vec{E_0}}\,\mathrm{e}^{\,\mathrm{i}\,\omega\,t}$$

 $\diamondsuit$ Ce qui conduit d'abord à

$$\underline{\vec{v_0}} = \frac{-\frac{e}{m}}{\mathrm{i}\,\omega + \frac{1}{\tau}}$$

♦ Puis à

$$\underline{\vec{j_0}} = -n \, e \, \underline{\vec{v_0}} \qquad \rightsquigarrow \qquad \underline{\vec{j_0}} = \frac{n \, e^2}{n} \\ i \, \omega + \frac{1}{\tau} \times \underline{\vec{E_0}}$$

 $\diamondsuit$ Nous pouvons alors réécrire ce résultat sous la forme

$$\underline{\vec{j}_0} = \frac{\gamma_0}{1 + i\,\omega\,\tau} \times \underline{\vec{E}_0} \qquad \text{avec} \qquad \gamma_0 = \frac{n\,e^2\,\tau}{m}$$

 $\diamondsuit$ Nous voyons apparaître la conductivité complexe

$$\underline{\gamma} = \frac{\gamma_0}{1 + \mathrm{i}\,\omega\,\tau} \qquad \text{avec} \qquad \gamma_0 = \frac{n\,e^2\,\tau}{m}$$

© Matthieu Rigaut

## $\star$ première interprétation

 $\diamondsuit$  Dans le cas de fréquences faibles telles que  $\omega\,\tau\ll 1,$  nous avons

$$\underline{\vec{j}_0} = \gamma_0 \, \underline{\vec{E}_0}$$

- $\diamondsuit$ Nous retrouvons la loi d'OHM locale.
- $\Leftrightarrow$  En revanche, si  $\omega \tau \gg 1$ , nous avons

$$\underline{\gamma} = \frac{\gamma_0}{\mathrm{i}\,\omega\,\tau}\,\underline{\vec{E}_0} \qquad \rightsquigarrow \qquad \underline{\gamma} = -\mathrm{i}\,\frac{\gamma_0}{\omega\,\tau}\,\underline{\vec{E}_0}$$

 $\diamondsuit$ La puissance moyenne dissipée s'écrit donc

$$\mathscr{P} = \vec{j} \cdot \vec{E} \quad \rightsquigarrow \quad \left\langle \mathscr{P} \right\rangle = \frac{1}{2} \operatorname{Re} \left( \underline{\vec{j}} \cdot \underline{\vec{E}}^{\star} \right) \qquad \rightsquigarrow \qquad \left\langle \mathscr{P} \right\rangle = \frac{1}{2} \operatorname{Re} \left( -i \frac{\gamma_0}{\omega \tau} E_0^2 \right) = 0$$

- $\diamondsuit$ Il n'y a pas d'effet JOULE dans le conducteur.
- ♦ Cela s'explique très bien en fait car si le champ change trop rapidement, l'électron n'a pas le temps de se déplacer entre deux noyaux. Il ne peut plus interagir avec le réseau, il ne perd donc plus d'énergie.

| <br>0 >              | . ⊕      | $\oplus$ | $\oplus$ |
|----------------------|----------|----------|----------|
| $\oplus \geq$        | $\oplus$ | $\oplus$ | $\oplus$ |
| $_{\oplus} \lesssim$ | $\oplus$ | $\oplus$ | $\oplus$ |

## $III \cdot 1 \cdot iv - lois dans le conducteur$

♦ Considérons toujours une OPPM comme champ extérieur.

#### $\star$ conservation de la charge

 $\diamondsuit$  La conservation de la charge se traduit par

$$\frac{\partial \rho}{\partial t} + \operatorname{div} \vec{j} = 0$$

 $\diamondsuit$  Avec la notation complexe, ce la donne

$$\frac{\partial \underline{\rho}}{\partial t} + \operatorname{div} \underline{j} = 0$$

 $\diamondsuit$  Introduisons la conductivité

$$i\omega \underline{\rho} + div\left(\underline{\gamma} \underline{\vec{E}}\right) = 0$$

 $\diamondsuit$ Comme le milieu est uniforme, nous pouvons « sortir »  $\gamma$  de la divergence

$$i \omega \underline{\rho} + \underline{\gamma} \operatorname{div} \underline{E} = 0$$

 $\Rightarrow$  Puis MAXWELL – GAUSS donne

$$i\,\omega\,\underline{\rho} + \underline{\gamma}\,\underline{\underline{\rho}}_{\varepsilon_0} = 0$$

 $\diamond$  Ce qui conduit à

© Matthieu Rigaut

$$\left(i\omega + \frac{\gamma}{\varepsilon}\right) \times \underline{\rho} = 0 \qquad \rightsquigarrow \qquad \underline{\rho} = 0$$

Dans un conducteur soumis à une onde électromagnétique, la charge volumique est nulle.

#### $\star$ les équations de MAXWELL

♦ Nous allons chercher comment une OPPM peut se propager dans un conducteur. L'onde électrique s'écrit alors

$$\underline{\vec{E}} = \vec{E}_0 e^{i(\omega t - \underline{\vec{k}} \cdot \vec{r})}$$

- ♦ En fait, nous venons d'écrire la forme d'une solution pour une POPPM puisque nous autorisons les valeurs complexes pour  $\underline{\vec{k}}$ .
- $\diamondsuit$  Dans ces conditions, nabla s'écrit

$$\vec{\nabla} = -\mathrm{i}\,\underline{\vec{k}}$$

- ♦ Nous pouvons réécrire à présent les équations de MAXWELL.
- $\diamondsuit$  L'équation de MAXWELL GAUSS s'écrit, compte-tenu du résultat précédent

$$\operatorname{div} \underline{\vec{E}} = 0 \quad \rightsquigarrow \quad -i\,\underline{\vec{k}}\cdot\underline{\vec{E}} = 0 \qquad \rightsquigarrow \qquad \underline{\vec{k}}\cdot\underline{\vec{E}} = 0$$

♦ Pas de surprise pour l'équation de MAXWELL – THOMSON

$$\operatorname{div} \underline{\vec{B}} = 0 \quad \rightsquigarrow \quad -i \, \underline{\vec{k}} \cdot \underline{\vec{B}} = 0 \qquad \rightsquigarrow \qquad \underline{\vec{k}} \cdot \underline{\vec{B}} = 0$$

 $\diamondsuit$  Pour MAXWELL – FARADAY, cela donne

$$\overrightarrow{\operatorname{rot}} \, \vec{\underline{E}} = -\frac{\partial \vec{\underline{B}}}{\partial t} \quad \rightsquigarrow \quad -\mathrm{i} \, \vec{\underline{k}} \wedge \vec{\underline{E}} = -\mathrm{i} \, \omega \, \vec{\underline{B}} \qquad \rightsquigarrow \qquad \vec{\underline{k}} \wedge \vec{\underline{E}} = \omega \, \vec{\underline{B}}$$

♦ Enfin, pour Maxwell – Ampère

$$\overrightarrow{\operatorname{rot}}\,\underline{\vec{B}} = \mu_0 \,\left(\underline{\vec{j}} + \varepsilon_0 \,\frac{\partial \underline{\vec{E}}}{\partial t}\right) \qquad \rightsquigarrow \qquad -\mathrm{i}\,\underline{\vec{k}} \wedge \underline{\vec{B}} = \mu_0 \,\left(\underline{\gamma}\,\underline{\vec{E}} + \varepsilon_0 \,(\mathrm{i}\,\omega)\,\underline{\vec{E}}\right)$$

 $\diamondsuit$  Et finalement

$$\underline{\vec{k}} \wedge \underline{\vec{B}} = i \mu_0 \left( \underline{\gamma} + \varepsilon_0 \left( i \, \omega \right) \right) \underline{\vec{E}}$$

#### $\star$ relation de dispersion

- $\diamond$  Or, pour trouver l'équation de « propagation » nous partons du calcul de  $\overrightarrow{rot}$  ( $\overrightarrow{rot}$ ()). Sauf qu'ici, le rotationnel est équivalent à un produit vectoriel avec  $\underline{\vec{k}}$ .
- $\diamond$  Calculons donc, pour changer,  $\underline{\vec{k}} \wedge \left(\underline{\vec{k}} \wedge \underline{\vec{E}}\right)$

$$\underline{\vec{k}} \wedge \left(\underline{\vec{k}} \wedge \underline{\vec{E}}\right) = \left(\underline{\vec{k}} \cdot \underline{\vec{E}}\right) \times \underline{\vec{k}} - \left(\underline{\vec{k}} \cdot \underline{\vec{k}}\right) \times \underline{\vec{E}}$$

© Matthieu Rigaut

Version du 4 mars 2014

 $\diamond$  Avec MAXWELL – GAUSS cela donne

$$\underline{\vec{k}} \wedge \left(\underline{\vec{k}} \wedge \underline{\vec{E}}\right) = 0 - \underline{k}^2 \, \underline{\vec{E}}$$

 $\diamondsuit$  Reprenons le double produit vectoriel et injectons MAXWELL – FARADAY

$$\underline{\vec{k}} \wedge \left(\underline{\vec{k}} \wedge \underline{\vec{E}}\right) = \underline{\vec{k}} \wedge \left(\omega \wedge \underline{\vec{B}}\right) \qquad \rightsquigarrow \qquad \underline{\vec{k}} \wedge \left(\underline{\vec{k}} \wedge \underline{\vec{E}}\right) = \omega \times \underline{\vec{k}} \wedge \underline{\vec{B}}$$

 $\diamond$  Et avec Maxwell – Ampère

$$\underline{\vec{k}} \wedge \left(\underline{\vec{k}} \wedge \underline{\vec{E}}\right) = \mathrm{i}\,\omega\,\mu_0\,\left(\underline{\gamma} + \varepsilon_0\,(\mathrm{i}\,\omega)\right)\,\underline{\vec{E}}$$

 $\diamondsuit$  En rapprochant les deux résultats, nous avons ainsi

$$-\underline{k}^{2}\,\underline{\vec{E}} = \mathrm{i}\,\omega\,\mu_{0}\,\left(\underline{\gamma} + \varepsilon_{0}\,\mathrm{i}\,\omega\right)\,\underline{\vec{E}}$$

 $\diamondsuit$  Et comme cette relation est vérifiée quelle que soit l'onde électrique envisagée

$$\underline{k}^{2} = -\mathrm{i}\,\omega\,\mu_{0}\,\left(\underline{\gamma} + \varepsilon_{0}\,\mathrm{i}\,\omega\right)$$

♦ Réécrivons cette relation sous une autre forme en utilisant  $\varepsilon_0 \mu_0 c^2 = 1$  et en remplaçant la conductivité complexe par son expression

$$\underline{k}^{2} = \omega^{2} \mu_{0} \varepsilon_{0} - \mathrm{i} \omega \mu_{0} \underline{\gamma} \qquad \rightsquigarrow \qquad \underline{k}^{2} = \frac{\omega^{2}}{c^{2}} - \mathrm{i} \omega \mu_{0} \times \frac{\gamma_{0}}{1 + \mathrm{i} \omega \tau}$$

## $III \cdot 1 \cdot v$ – basse fréquences : effet de peau

#### $\star$ simplification de la relation de dispersion

 $\diamondsuit$  En basses-fréquences nous avons

$$\omega\,\tau\ll 1$$

 $\diamondsuit$ La relation de dispersion se simplifie donc en

$$\underline{k}^2 = \frac{\omega^2}{c^2} - \mathrm{i}\,\omega\,\mu_0\,\gamma_0$$

 $\diamondsuit$  Comparons les deux termes

$$\frac{\omega \,\mu_0 \,\gamma_0}{\frac{\omega^2}{c^2}} = \frac{\gamma_0}{\varepsilon_0 \,\omega}$$

♦ Or, numériquement,

$$\gamma_0 \sim 10^7 \text{ S.m}^{-1}$$
 et  $\varepsilon_0 \sim 10^{-11} \text{ F.m}^{-1} \longrightarrow \frac{\omega \,\mu_0 \,\gamma_0}{\frac{\omega^2}{\epsilon^2}} \sim \frac{10^{18}}{\omega}$ 

 $\diamondsuit$ Sauf que nous avons supposé les BF, ce qui implique, numériquement

$$\omega \ll \frac{1}{\tau} \sim 10^{14} \text{ rad.s}^{-1}$$

 $\diamondsuit$ Nous pouvons donc en conclure que

© Matthieu Rigaut

$$\frac{\omega \,\mu_0 \,\gamma_0}{\frac{\omega^2}{c^2}} \sim \frac{10^{18}}{\omega} \gg 1$$

 $\diamondsuit$  Ce qui permet de simplifier la relation de dispersion en

$$\underline{k}^2 = -\mathrm{i}\,\omega\,\mu_0\,\gamma_0$$

## $\star$ vecteur d'onde complexe

 $\diamondsuit$  Pour trouver le vecteur d'onde complexe, utilisons la technique habituelle, à savoir écrire  $-{\rm i}$  sous sa forme exponentielle

$$\underline{k}^2 = \omega \,\mu_0 \,\gamma_0 \times \mathrm{e}^{-\mathrm{i}\,\pi/2} \qquad \rightsquigarrow \qquad \underline{k} = \pm \sqrt{\omega \,\mu_0 \,\gamma_0} \times \mathrm{e}^{-\mathrm{i}\,\pi/4}$$

 $\diamondsuit$  Et en repassant en notation algébrique, ce la donne

$$\underline{k} = \pm \sqrt{\omega \,\mu_0 \,\gamma_0} \times \frac{1 - \mathbf{i}}{\sqrt{2}} \qquad \rightsquigarrow \qquad \underline{k} \stackrel{\text{not}}{=} k_0 \,(1 - \mathbf{i}) \quad \text{avec} \quad k_0 = \sqrt{\frac{\omega \,\gamma_0 \,\mu_0}{2}}$$

## $\star$ retrouvailles

- $\diamondsuit$  Nous retrouvons bien l'effet de peau.
- $\diamondsuit$  En effet, l'expression du champ s'écrit, en prenant  $\underline{\vec{k}}=\underline{k}\,\vec{u}_z$

$$\underline{\vec{E}} = \underline{\vec{E}_0} e^{i(\omega t - \underline{k}z)} \quad \rightsquigarrow \quad \underline{\vec{E}} = \underline{\vec{E}_0} e^{i(\omega t - k_0 (1 - i)z)}$$

 $\diamondsuit$  Et en séparant partie réelle et partie imaginaire de  $\underline{k}$ 

$$\underline{\vec{E}} = \underline{\vec{E}_0} \times e^{-z/\delta} \times e^{i(\omega t - k_0 z)} \qquad \text{avec} \qquad \delta = \frac{1}{k_0} = \sqrt{\frac{2}{\omega \gamma_0 \mu_0}}$$

- $\diamondsuit$   $\delta$  est bien l'épaisseur de peau.
- *Remarque.* Dans ce chapitre, nous sommes parti d'un cas général, pour une fréquence (presque) quelconque et nous n'avons simplifié qu'après l'obtention de la relation de dispersion. Lorsque nous avions parlé de l'effet de peau dans le chapitre 1, nous avions commencé par nous placer en ARQS et nous avons trouvé la solution après.
- $\diamondsuit$  Rappelons quelques résultats de l'effet de peau.
- ♦ L'expression de  $\underline{\vec{B}} = \frac{\underline{\vec{k}} \wedge \underline{\vec{E}}}{\omega}$ , de par la présence d'un vecteur d'onde *complexe*, montre que les champs magnétique et électrique sont déphasés.
- ♦ Les ondes électrique et magnétique sont transverses (cf. MAXWELL GAUSS et MAXWELL THOM-SON).
- ♦ L'épaisseur de peau  $\delta = \sqrt{\frac{2}{\omega \gamma_0 \mu_0}}$  diminue avec la fréquence et la conductivité.
- ♦ Un conducteur parfait est tel que  $\delta \rightarrow 0$  et est tel que les champs électrique et magnétique sont nuls à l'intérieur du conducteur.
- ◇ Rappelons qu'il ne faut pas confondre « conducteur parfait » et « supra-conducteur » car si les deux ont bien des champs électrique et magnétique nuls en leur sein, le courant dans un supra-conducteur n'est pas en surface mais en volume.

#### $\star$ vitesses

 $\diamondsuit$ Reprenons l'expression du vecteur d'onde complexe

$$\underline{k} = \sqrt{\frac{\omega \,\mu_0 \,\gamma_0}{2}} \left(1 - \mathbf{i}\right) \qquad \rightsquigarrow \qquad \underline{k} = k'(\omega) + \mathbf{i} \, k''(\omega)$$

#### Vitesse de phase

 $\diamond$  Par définition, nous avons

$$v_{\varphi} = \frac{\omega}{k'}$$

 $\diamondsuit$  Cela donne tout de suite

$$v_{\varphi} = \sqrt{\frac{2\,\omega}{\mu_0\,\gamma_0}}$$

 $\diamondsuit$  Le fait que la vites se de phase dépende de la pulsation montre qu'il y a de la dispersion.

#### Vitesse de groupe

 $\diamondsuit$ La vitesse de groupe s'écrit, quant à elle

$$v_{\rm g} = \frac{\mathrm{d}\omega}{\mathrm{d}k'} = \frac{1}{\frac{\mathrm{d}k'}{\mathrm{d}\omega}}$$

 $\diamondsuit$ Reste à calculer

$$v_{\rm g} = \frac{1}{\frac{1}{2} \times \sqrt{\frac{\mu_0 \gamma_0}{2 \, \omega}}} \qquad \rightsquigarrow \qquad v_{\rm g} = 2 \times \sqrt{\frac{2 \, \omega}{\mu_0 \, \gamma_0}} = 2 \, v_{\varphi}$$

♦ Nous pouvons constater que la vitesse de groupe n'est pas du tout égale à la vitesse de phase.

## $III \cdot 1 \cdot vi$ – haute fréquence : réflexion, transparence

- $\star$  simplifier la relation de dispersion
- $\diamondsuit$  Reprenons la relation de dispersion

$$\underline{k}^{2} = \frac{\omega^{2}}{c^{2}} - \mathrm{i}\,\omega\,\mu_{0} \times \frac{\gamma_{0}}{1 + \mathrm{i}\,\omega\,\tau}$$

 $\diamondsuit$ Simplifions dans le cas des hautes fréquences, du moins pour les fréquences telles que  $\omega\,\tau\gg1.$  Cela donne

$$\underline{k}^2 = \frac{\omega^2}{c^2} - \mathrm{i}\,\omega\,\mu_0 \times \frac{\gamma_0}{\mathrm{i}\,\omega\,\tau} \qquad \rightsquigarrow \qquad \underline{k}^2 = \frac{\omega^2}{c^2} - \frac{\mu_0\,\gamma_0}{\tau}$$

 $\diamondsuit$ Utilisons l'expression que nous avons obtenue pour  $\gamma_0$ 

$$\gamma_0 = \frac{n e^2 \tau}{m} \quad \rightsquigarrow \quad \underline{k}^2 = \frac{\omega^2 - \frac{\mu_0 n e^2 c^2}{m}}{c^2} \quad \rightsquigarrow \quad \underline{k}^2 = \frac{\omega^2 - \frac{n e^2}{m \varepsilon_0}}{c^2}$$

 $\diamondsuit$ Nous voyons que la duré<br/>e $\tau$  disparaît du résultat.

♦ Ce n'est pas très étonnant quand nous pensons à l'approximation que nous venons de faire : la fréquence est si élevée que les électrons n'ont plus le temps d'interagir avec le réseau cristallin.

♦ Réécrivons la relation de dispersion sous la forme

$$\underline{k}^{2} = \frac{\omega^{2} - \omega_{p}^{2}}{c^{2}} \qquad \text{avec} \qquad \omega_{p}^{2} = \frac{n e^{2}}{m \varepsilon_{0}}$$

 $\diamond \omega_{\rm p}$  est appelée la pulsation plasmon (ou pulsation plasma).

♦ Numériquement

$$\omega_{\rm p}{}^2 \sim \frac{10^{29} \times 10^{-38}}{10^{-30} \times 10^{-11}} \sim 10^{32} \qquad \rightsquigarrow \qquad \omega_{\rm p} \sim 10^{16} \ {\rm rad.s^{-1}}$$

\* premier cas :  $\omega > \omega_{\rm p} \gg 1/\tau$ 

 $\diamondsuit$  Dans ces conditions, nous avons

$$\underline{k}^2 = \frac{\omega^2 - {\omega_{\rm p}}^2}{c^2} > 0$$

 $\diamondsuit$  Le vecteur d'onde est réel et nous avons

$$\underline{k} = k = \sqrt{\frac{\omega^2 - \omega_{\rm p}^2}{c^2}}$$

 $\diamond$  Nous voyons alors que :

- → il n'y a pas d'atténuation (car le vecteur d'onde est réel);
- → il va y avoir de la dispersion (car k n'est pas proportionnel à  $\omega$ ).
- $\diamond$  Dans ces conditions, l'onde électromagnétique *traverse* le conducteur *sans* s'atténuer : le milieu est parfaitement transparent.

\* premier cas :  $\omega_{\rm p} > \omega \gg 1/\tau$ 

 $\diamondsuit$  Dans ce cas, la relation de dispersion s'écrit

$$\underline{k}^2 = \frac{\omega^2 - {\omega_{\rm p}}^2}{c^2} < 0$$

 $\diamondsuit$  Le vecteur d'onde est donc imaginaire pur et nous avons

$$\underline{k} = \pm i \sqrt{\frac{\omega_p^2 - \omega^2}{c^2}} \stackrel{\text{\tiny not}}{=} \epsilon i k_0 \quad \text{avec} \quad \epsilon = \pm 1$$

- $\diamondsuit$  Le fait qu'il n'y ait pas de partie réelle montre qu'il n'y a  $\mathbf{pas}$  de propagation.
- ♦ En revanche, il y a de l'atténuation car  $\operatorname{Im}(\underline{k}) \neq 0$ .

## **@** une « onde » non propagative

 $\diamondsuit$ Pour une OPPM polarisée rectilignement sur  $\vec{u_x},$  cela donne

$$\underline{\vec{E}} = \vec{E}_0 \times e^{i(\omega t - i\epsilon k_0 z)} \times \vec{u}_x \qquad \rightsquigarrow \qquad \underline{\vec{E}} = \vec{E}_0 \times e^{\epsilon k_0 z} \times e^{i\omega t} \times \vec{u}_x$$

 $\diamondsuit$  Et en notation réelle

$$\vec{E} = \vec{E}_0 \times \mathrm{e}^{\epsilon \, k_0 \, z} \times \cos\left(\omega \, t\right) \times \vec{u}_x$$

- ♦ Nous pouvons effectivement constater que le résultat n'est pas une onde propagative car elle ne s'écrit pas sous la forme  $\omega t k_0 z$ .
- $\diamondsuit$  « L'onde » ainsi obtenue est appelée onde évanescente.

## **∂** interprétation énergétique

 $\diamondsuit$  Le vecteur de POYNTING vaut, en moyenne,

$$\left\langle \vec{\Pi} \right\rangle = \frac{1}{2} \operatorname{Re} \left( \frac{\vec{E} \wedge \vec{B}^{\star}}{\mu_0} \right)$$

 $\diamondsuit$  Or, avec la relation de structure, nous avons

$$\underline{\vec{E}} \wedge \underline{\vec{B}}^{\star} = \underline{\vec{E}} \wedge \left(\frac{\underline{\vec{k}}^{\star} \wedge \underline{\vec{E}}^{\star}}{\omega}\right)$$

 $\diamondsuit$  En développant le double produit vectoriel et en utilisant la relation de structure

$$\underline{\vec{E}} \wedge \underline{\vec{B}}^{\star} = \frac{E^2}{\omega} \underline{\vec{k}}^{\star} - 0$$

 $\diamond$  Et ainsi

$$\left\langle \vec{\Pi} \right\rangle = \frac{1}{2} \operatorname{Re} \left( \frac{E^2}{\omega \,\mu_0} \, \vec{\underline{k}}^{\star} \right)$$

 $\diamondsuit$ Sauf que le vecteur d'onde est imaginaire pur, ce qui implique

$$\left\langle \vec{\Pi} \right\rangle = \vec{0}$$

- ♦ La question est : « Où part l'énergie ? »
- ♦ Si de l'énergie arrive mais qu'elle n'est pas conservée par le milieu, c'est qu'elle repart.
- ♦ Autrement dit, nous avons affaire ici à un phénomène de réflexion.
- $\diamondsuit$  Nous venons tout simplement de montrer que les métaux réfléchissent les ondes électromagnétique de hautes-fréquences.
- $\diamondsuit$  C'est exactement comme ça que fonctionnent les miroirs métalliques.

# $III \cdot 2 - Guide d'onde$

## $III \cdot 2 \cdot i - présentation$

## $\bigstar$ guide d'onde réel

- $\diamondsuit$  Le but d'un guide d'onde est de transmettre une onde d'un point à un autre sans perte.
- $\Leftrightarrow$  Pour les ondes lumineuses, le lecteur connaît sûrement les guides d'onde associés : ce sont les fibres optique.
- $\diamond$  Pour les ondes de plus basses fréquences, utilisées notamment dans les radars de détections, le guide est un simple tube creux de section rectangulaire et dont les parois sont métallique comme le montre la photo ci-dessous<sup>6</sup>

<sup>6.</sup> Source: http://www.electronique.biz/photos/large/414056.JPG



## $\star$ modélisation

♦ Vu de face la section du guide ressemble au schéma ci-dessous.



 $\diamondsuit$  Vu de profil, la situation est la suivante.



♦ Nous ferons aussi l'approximation que les conducteurs métalliques limitant le guide sont parfaits.

## $\star$ contraintes

 $\diamondsuit$  Nous allons chercher à faire propager suivant  $\vec{u_x}$  l'onde électrique suivante

$$\vec{E}(x,y,z,t) = E(y,z) \times \cos(\omega t - kx) \vec{u}_y$$

- $\diamondsuit$ Il s'agit d'une onde polarisée rectilignement horizontalement.
- We Attention! Rien ne nous dit *a priori* qu'il s'agit d'une OPPM.
- $\diamond$  L'onde doit obéir aux lois physiques :
  - → les équations de MAWXELL dans le vide (à l'intérieur du guide);
  - $\rightarrow$  les conditions aux limites (au niveau des parois métalliques).

# III $\cdot 2 \cdot ii$ – champ $\vec{E}$

## $\star$ contrainte

- ♦ La première chose à vérifier, puisque nous imposons une certaine forme de solution, est que la solution proposée respecte la structure du champ électrique telle que l'imposent les lois de MAXWELL.
- ♦ Commençons par MAXWELL GAUSS qui s'écrit, dans le vide,

$$\operatorname{div} \vec{E} = 0$$

 $\diamondsuit$ Ici, comme il n'y a de composantes de  $\vec{E}$  que sur  $\vec{u}_y$  la divergence se simplifie en

$$\frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z} = 0 \qquad \rightsquigarrow \qquad \frac{\partial E_y}{\partial y} = 0$$

 $\diamondsuit$ Cela implique que le champ électrique ne dépend pas de y, donc qu'il s'écrit

$$\vec{E}(x,y,z,t) = E(z) \times \cos(\omega t - kx) \vec{u}_y$$

## $\star$ contrainte de l'équation de propagation

- ♦ Pour faire en sorte que le champ électrique vérifie l'autre équation de MAXWELL, nous devons « éliminer »  $\vec{B}$  des équations, ce qui revient à trouver l'équation de propagation vérifiée par  $\vec{E}$ .
- ♦ Après la démonstration usuelle (basée sur le calcul de  $\overrightarrow{rot}$  ( $\overrightarrow{rot} \vec{E}$ ), nous trouvons, comme d'habitude et parce que *dans* le guide d'onde le milieu est vide

$$\vec{\Delta} \, \vec{E} = \frac{1}{c^2} \, \frac{\partial^2 \vec{E}}{\partial t^2}$$

 $\diamond$  En projetant cette équation sur  $\vec{u}_y$  (et parce que le laplacien vectoriel se projette très bien dans la base cartésienne), nous avons

$$\triangle E_y = \frac{1}{c^2} \frac{\partial^2 E_y}{\partial t^2}$$

 $\diamondsuit$  L'expression du laplacien (toujours en coordonnées cartésiennes) donne, ici,

$$\frac{\partial^2 E_y}{\partial x^2} + \frac{\partial^2 E_y}{\partial z^2} = \frac{1}{c^2} \frac{\partial^2 E_y}{\partial t^2}$$

 $\diamondsuit$  Et en remplaçant par l'expression recherchée pour le champ, nous obtenons

$$-(-k)^{2} E(z) \cos(\omega t - kx) + \frac{\mathrm{d}^{2} E}{\mathrm{d} z^{2}}(z) \times \cos(\omega t - kx) = -\frac{\omega^{2}}{c^{2}} \times \cos(\omega t - kx)$$

 $\diamondsuit$ Ce qui conduit à

$$\frac{\mathrm{d}^2 E}{\mathrm{d}z^2}(z) + \left(\frac{\omega^2}{c^2} - k^2\right) E(z) = 0 \qquad \rightsquigarrow \qquad \frac{\mathrm{d}^2 E}{\mathrm{d}z^2}(z) + K^2 E(z) = 0 \quad \text{avec} \quad K^2 = \frac{\omega^2}{c^2} - k^2$$

## $\star$ résolution

- ♦ Le type de solution va dépendre du signe de  $K^2$ .
- $\diamondsuit$  Mais avant, regardons les conditions aux limites.

## **@** les conditions aux limites

♦ Nous cherchons une solution en z, nous devons donc regarder ce qui se passe aux limites de z, *i.e.* en z = 0 et en z = a.



♦ Nous pouvons remarquer qu'en  $z = 0^-$  et en  $z = a^+$ , nous avons des conducteurs parfaits, ce qui implique

$$\vec{E}(x,y,0^{-},t) = \vec{0}$$
 et  $\vec{E}(x,y,a^{+},t) = \vec{0}$ 

- $\diamond$  Remarquons aussi que, pour les plans en z = 0 et z = a, le champ dans le guide d'onde est tangentiel.
- $\diamondsuit$ Comme la composante tangentielle d'un champ électrique est continue à la traversée d'une surface chargée, nous pouvons en déduire que

$$E_y(x,y,0^+,t) = 0$$
 et  $E_y(x,y,a^-,t) = 0$ 

**b** Remarque. Nous ne pouvons rien dire en ce qui concerne les plans verticaux en y = 0 et y = b. L'écriture des relations de passage impliquerait sûrement l'existence de charges surfaciques.

#### premier cas

 $\diamondsuit$ Si $K^2 < 0,$  posons

$$\alpha^2 = -K^2 > 0$$

 $\diamondsuit$  Alors l'équation pour E(z) s'écrit

$$\frac{\mathrm{d}^2 E}{\mathrm{d}z^2}(z) - \alpha^2 E(z) = 0$$

- $\diamondsuit$  Les solutions sont du type
- $E(z) = A \cosh(\alpha z) + B \sinh(\alpha z)$
- $\diamondsuit$  Or les conditions aux limites impliquent :
  - → E(0) = 0, soit A = 0;
  - $\rightarrow$  E(a) = 0, so t B = 0.

 $\diamondsuit$  Autrement dit, il n'y a pas d'onde qui puisse vérifier

$$\frac{\omega^2}{c^2} - k^2 < 0$$

## **∂** deuxième cas

 $\diamondsuit$  Avec  $K^2>0,$  l'équation à résoudre est

$$\frac{\mathrm{d}^2 E}{\mathrm{d}z^2}(z) + K^2 E(z) = 0$$

 $\diamondsuit$  Les solutions sont

$$E(z) = A \cos(K z) + B \sin(K z)$$

 $\diamondsuit$  La condition à la limite z=0 implique

 $E(0) = 0 \qquad \rightsquigarrow \qquad A = 0$ 

 $\diamondsuit$  La condition à la limite z=a implique, en excluant la solution in intéressante B=0 correspondant à l'absence d'onde,

$$E(a) = 0 \quad \rightsquigarrow \quad B \sin(Ka) = 0 \quad \rightsquigarrow \quad Ka = n\pi \quad \text{avec} \quad n \text{ entire}$$

 $\diamondsuit$  Autrement dit, il peut y avoir des solutions pourvu que

$$\frac{\omega^2}{c^2} - k^2 = K^2 \quad \rightsquigarrow \quad \frac{\omega^2}{c^2} - k^2 = \frac{n^2 \pi^2}{a^2} \quad \rightsquigarrow \quad k^2 = \frac{\omega^2}{c^2} - \frac{n^2 \pi^2}{a^2}$$

#### **∂** conclusion

 $\diamondsuit$  La solution s'écrit, finalement,

$$E_y(x,z,t) = E_0 \sin\left(\frac{\pi n z}{a}\right) \times \cos\left(\omega t - k_n x\right) \qquad \text{avec} \qquad k_n^2 = \frac{\omega^2}{c^2} - \frac{n^2 \pi^2}{a^2}$$

# III $\cdot 2 \cdot iii$ – champ $\vec{B}$

#### $\star$ expression

 $\diamondsuit$  L'erreur la plus courante est d'utiliser la relation de structure

$$\vec{B} = \frac{\vec{k} \times \vec{E}}{\omega}$$

 $\diamondsuit$  Ici, cette relation est in applicable. En effet :

- $\rightarrow$  nous avons bien une onde qui se propage dans le vide;
- $\rightarrow$  nous avons bien une onde progressive;
- $\rightarrow$  nous avons bien une onde monochromatique;
- → mais nous n'avons pas une onde plane car nous ne pouvons pas l'écrire sous la forme d'une fonction de  $\omega t \vec{k} \cdot \vec{r}$ .
- ♦ Ce dernier point est rédhibitoire. Nous devons donc revenir à la base, *i.e.* aux équations de MAXWELL.
- ♦ Reprenons les deux équations de couplage, à savoir MAXWELL FARADAY et MAXWELL AMPÈRE,

$$\overrightarrow{\operatorname{rot}} \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
 et  $\overrightarrow{\operatorname{rot}} \vec{B} = \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$ 

- $\diamond$  La première sera clairement plus facile à utiliser car il est plus aisé, techniquement, de primitiver par rapport à t que d'inverser un rotationnel.
- ♦ Commençons par simplifier le rotationnel avant de le calculer.

$$\overrightarrow{\operatorname{rot}} \vec{E} = \vec{\nabla} \wedge \vec{E} \quad \rightsquigarrow \quad \overrightarrow{\operatorname{rot}} \vec{E} = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} \wedge \begin{pmatrix} E_x \\ E_y \\ E_z \end{pmatrix} \quad \rightsquigarrow \quad \overrightarrow{\operatorname{rot}} \vec{E} = \begin{pmatrix} \frac{\partial}{\partial x} \\ 0 \\ \frac{\partial}{\partial z} \end{pmatrix} \wedge \begin{pmatrix} 0 \\ E_y \\ 0 \\ \frac{\partial}{\partial z} \end{pmatrix} \wedge \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

 $\diamond$  Nous avons donc

$$\overrightarrow{\operatorname{rot}} \vec{E} = -\frac{\partial E_y}{\partial z} \vec{u}_x + \frac{\partial E_y}{\partial x} \vec{u}_z$$
$$= -E_0 \frac{n \pi}{a} \cos\left(\frac{\pi n z}{a}\right) \times \cos\left(\omega t - k_n x\right) \vec{u}_x + k_n E_0 \sin\left(\frac{\pi n z}{a}\right) \times \sin\left(\omega t - k_n x\right) \vec{u}_z$$

 $\Rightarrow$  Primitivons par rapport à t (sans oublier le changement de signe imposé par la loi de MAXWELL – FARADAY) en omettant directement les termes non propagatifs.

$$\vec{B}(x,z,t) = E_0 \frac{n\pi}{a\,\omega} \,\cos\left(\frac{\pi n z}{a}\right) \times \sin\left(\omega t - k_n x\right) \vec{u}_x + \frac{k_n E_0}{\omega} \,\sin\left(\frac{\pi n z}{a}\right) \times \cos\left(\omega t - k_n x\right) \vec{u}_z$$

## $\star$ interprétation

♦ Nous pouvons constater aisément que

 $\vec{B} \cdot \vec{u}_x \neq 0$ 

- $\diamondsuit$  Autrement dit, bien que le champ électrique soit transverse, le champ magnétique **n'est pas** transverse.
- ♦ Regardons ce qu'impliquent les relations de passage en champ magnétique au niveau de z = 0 et z = a.



- ♦ Il doit y avoir continuité de la composante normale. Or :
  - → la composante normale pour les deux plans considérés est la composante sur  $\vec{u}_z$ ;
  - $\rightarrow$  le champ magnétique dans le conducteur parfait est nul.
- $\diamondsuit$  Nous devons donc avoir

$$B_z(x,0,t) = 0 \qquad \text{et} \qquad B_z(x,a,t) = 0$$

 $\diamondsuit$  Ces relations sont vérifiées, tout va bien.

- $\Rightarrow$  En ce qui concerne la composante tangentielle *qui existe*, nous pouvons voir qu'elle implique la présence de courant surfaciques.
- $\diamondsuit$  Les traductions des relations de passage en z=0 et z=a permettent de calculer ce courant surfacique, et s'écrivent

$$\vec{n}_{12} \wedge \left(\vec{B}_2 - \vec{B}_1\right) = \mu_0 \,\vec{j}_{\rm s} \qquad \rightsquigarrow \qquad \begin{cases} \vec{u}_z \wedge \left(\vec{B}(x,0,t) - \vec{0}\right) = \mu_0 \,\vec{j}_{\rm s}(x,0,t) \\ \vec{u}_z \wedge \left(\vec{0} - \vec{B}(x,a,t)\right) = \mu_0 \,\vec{j}_{\rm s}(x,a,t) \end{cases}$$

## $III \cdot 2 \cdot iv - relation de dispersion$

 $\diamondsuit$  Reprenons la relation de dispersion

$$k^2 = \frac{\omega^2}{c^2} - \frac{n^2 \, \pi^2}{a^2}$$

## \* premier cas : $k^2 < 0$

 $\diamondsuit$ Si  $k^2 < 0,$ nous pouvons l'écrire sous la forme

$$k^{2} = \left(i \, k''\right)^{2} \quad \rightsquigarrow \quad k = \epsilon \, i \, k'' \quad \text{avec} \quad \epsilon = \pm 1$$

 $\diamond$  La solution, en complexe, s'écrit donc

$$\underline{\vec{E}} = E_0 \sin\left(\frac{n \pi z}{a}\right) e^{i(\omega t - \underline{k}x)} \vec{u}_y \qquad \rightsquigarrow \qquad \underline{\vec{E}} = E_0 \sin\left(\frac{n \pi z}{a}\right) e^{i^2 k'' \epsilon x} \times e^{i\omega t} \vec{u}_y$$

 $\diamondsuit$  Et en ne gardant que la solution qui diminue avec x

$$\underline{\vec{E}} = E_0 \sin\left(\frac{n \pi z}{a}\right) e^{-k'' x} \times e^{i \omega t} \vec{u}_y \qquad \rightsquigarrow \qquad \vec{E} = E_0 \sin\left(\frac{n \pi z}{a}\right) e^{-k'' x} \times \cos\left(\omega t\right) \vec{u}_y$$

- $\diamondsuit$  Ce n'est plus vraiment une onde puisque le champ n'est pas propagatif.
- $\diamondsuit$  Nous retrouvons là une onde *évanescente*.
- $\diamondsuit$  En pratique, cela signifie que, à n donné, il y a une pulsation limite en dessous de laquelle le champ ne peut plus se propager.
  - \* deuxième cas :  $k^2 > 0$

#### **@** un filtre passe-haut

 $\Leftrightarrow$  Avec  $k^2>0,$  nous pouvons écrire

$$\frac{\omega^2}{c^2} = k^2 + \frac{n^2 \pi^2}{a^2} \qquad \rightsquigarrow \qquad \omega = c \times \sqrt{k^2 + \frac{n^2 \pi^2}{a^2}}$$

 $\diamondsuit$  Graphiquement, pour plusieurs valeurs de n, cela donne

© Matthieu Rigaut



♦ Sur le graphique ci-dessus, nous avons représenté en pointillé la relation de dispersion  $\omega = k c$ . ♦ Nous remarquons aussi que, pour chaque valeur de n, il y a une pulsation minimale telle que

$$\omega_{\mathbf{c},n} = \frac{n \, \pi \, c}{a}$$

♦ D'une certaine manière, le guide d'onde agit comme un filtre qui ne laisserait passer que les pulsations assez-haute. Un filtre passe-haut, en somme, dont la fréquence de coupure serait  $\omega_{c,n}$ .

## Vitesse de phase

♦ La vitesse de phase s'écrit

$$v_{\varphi} = \frac{\omega}{k} \qquad \rightsquigarrow \qquad v_{\varphi} = \frac{\omega}{\sqrt{\frac{\omega^2}{c^2} - \frac{n^2 \pi^2}{a^2}}}$$

- $\diamond$  Comme la vitesse de phase dépend de  $\omega$ , nous pouvons dire qu'il y aura de la dispersion.
- ♦ Réécrivons la vitesse de phase en faisant apparaître la pulsation de coupure  $\omega_{c,n} = \frac{n + n}{2}$

$$v_{\varphi} = \frac{c}{\sqrt{1 - \frac{n^2 \pi^2 c^2}{a^2 \omega^2}}} \qquad \rightsquigarrow \qquad v_{\varphi} = \frac{c}{\sqrt{1 - \frac{\omega_{\mathrm{c},n}^2}{\omega^2}}} > c$$

- ♦ La vitesse de phase est plus grande que la célérité de la lumière!
- ♦ En fait, ce n'est pas grave car, ici, comme dans la très grande majorité des cas, l'énergie se déplace à la vitesse de groupe.

#### itesse de groupe

♦ La vitesse de groupe s'écrit

$$v_{\rm g} = \frac{\mathrm{d}\omega}{\mathrm{d}k}$$

 $\diamondsuit$  Pour la calculer simplement, partons de la relation de dispersion

$$\omega^2 = c^2 k^2 + \frac{n^2 \pi^2 c^2}{a^2}$$

 $\diamondsuit$  En différenciant, cela donne

$$2 \omega \,\mathrm{d}\omega = c^2 \, 2 \, k \,\mathrm{d}k \quad \rightsquigarrow \quad \frac{\mathrm{d}\omega}{\mathrm{d}k} = \frac{c^2 \, k}{\omega} \qquad \rightsquigarrow \qquad v_\mathrm{g} = \frac{c^2}{v_\varphi}$$

 $\diamondsuit$  Et nous obtenons bien

$$v_{\rm g} = c \times \sqrt{1 - \frac{{\omega_{{\rm c},n}}^2}{\omega^2}} < c$$

## $III \cdot 2 \cdot v - aspect énergétique$

◇ Dans ce paragraphe, nous allons montrer que l'énergie se déplace effectivement à une célérité égale à la vitesse de groupe.

## $\star$ moyenne de la densité volumique d'énergie

 $\diamondsuit$ La densité volumique d'énergie s'écrit

$$u_{\rm em} = \frac{1}{2} \,\varepsilon_0 \, E^2 + \frac{1}{2 \,\mu_0} \, B^2$$

 $\diamond$  Pour alléger les écriture, notons

$$\xi = \frac{n \pi z}{a}$$
 et  $\varphi = \omega t - k_n x$ 

 $\diamondsuit$  Nous avons alors, en reprenant les expressions de  $\vec{E}$  et  $\vec{B}$ 

$$u_{\rm em} = \frac{1}{2} \varepsilon_0 E_0^2 \sin^2 \xi \, \cos^2 \varphi + \frac{1}{2\,\mu_0} \left( \frac{E_0^2 k_n^2}{\omega^2} \sin^2 \xi \, \cos^2 \varphi + \frac{E_0^2 n^2 \pi^2}{a^2 \, \omega^2} \, \cos^2 \xi \, \sin^2 \varphi \right)$$

 $\diamond$  Prenons la valeur moyenne aussi bien dans le temps  $\langle u_{\rm em} \rangle$  que dans l'espace  $\langle \overline{u_{\rm em}} \rangle$ . Cela implique que

$$\overline{\sin^2 \xi} = \overline{\cos^2 \xi} = \frac{1}{2}$$
 et  $\left\langle \cos^2 \varphi \right\rangle = \left\langle \sin^2 \varphi \right\rangle = \frac{1}{2}$ 

 $\diamondsuit$  Nous avons alors

$$\langle \overline{u_{\rm em}} \rangle = \frac{1}{8} \varepsilon_0 E_0^2 + \frac{1}{8 \mu_0} \left( \frac{E_0^2 k_n^2}{\omega^2} + \frac{E_0^2 n^2 \pi^2}{a^2 \omega^2} \right)$$

 $\diamondsuit$ Utilisons les relations suivantes

$$\frac{1}{\mu_0} = \varepsilon_0 c^2$$
 et  $\frac{n^2 \pi^2}{a^2 \omega^2} = \frac{1}{c^2} - \frac{k_n^2}{\omega^2}$ 

 $\diamondsuit$  Cela nous permet de factoriser

$$\left\langle \overline{u_{\rm em}} \right\rangle = \frac{1}{8} \varepsilon_0 E_0^2 \times \left( 1 + \frac{k_n^2 c^2}{\omega^2} + \left( 1 - \frac{k_n^2 c^2}{\omega^2} \right) \right)$$

 $\diamondsuit$ Il reste alors, après simplifications

$$\left\langle \overline{u_{\rm em}} \right\rangle = \frac{1}{4} \, \varepsilon_0 \, E_0^2$$

#### \* moyenne du vecteur de POYNTING

♦ Commençons par exprimer le vecteur de POYNTING

$$\vec{\Pi} = \frac{\vec{E} \wedge \vec{B}}{\mu_0}$$
$$= \frac{1}{\mu_0} \times \left( E_0 \sin\xi \cos\varphi \,\vec{u}_y \wedge \left( \frac{k_n E_0}{\omega} \sin\xi \,\cos\varphi \,\vec{u}_z + \frac{n \pi E_0}{a \,\omega} \,\cos\xi \,\sin\varphi \,\vec{u}_x \right) \right)$$
$$= \frac{1}{\mu_0} \times \left( \frac{E_0^2 k_n}{\omega} \sin^2\xi \,\cos^2\varphi \,\vec{u}_x - \frac{n \pi E_0^2}{a \,\omega} \,\cos\xi \,\sin\xi \,\sin\varphi \,\cos\varphi \,\vec{u}_z \right)$$

 $\diamondsuit$  Or, en prenant la valeur moyenne, tant spatiale que temporelle, nous pouvons constater que

$$\left\langle \sin \varphi \, \cos \varphi \right\rangle = \frac{1}{2} \left\langle \sin(2 \, \varphi) \right\rangle \qquad \rightsquigarrow \qquad \left\langle \sin \varphi \, \cos \varphi \right\rangle = 0$$

 $\diamondsuit$ La composante sur  $\vec{u_z}$  du vecteur de POYNTING est donc nulle en moyenne, ce qui fait qu'il reste

$$\left\langle \vec{\Pi} \right\rangle = \frac{E_0^2 k_n}{4 \,\mu_0 \,\omega} \,\vec{u}_x$$

#### $\star$ vitesse de transport de l'énergie

 $\diamondsuit$  Comptons de deux manière différente l'énergie qui traverse la section S du guide d'onde pendant la durée dt.



 $\diamond$  Nous pouvons dire, de manière immédiate, que l'énergie qui traverse la section S n'est autre que le flux du vecteur de POYNTING que multiplie la durée. Cela donne

$$\delta \mathscr{E} = \Phi_{\Pi} \,\mathrm{d}t \quad \rightsquigarrow \quad \delta \mathscr{E} = \left\langle \overline{\Pi} \right\rangle S \,\mathrm{d}t \qquad \rightsquigarrow \qquad \delta \mathscr{E} = \frac{E_0^2 \,k_n S}{4 \,\mu_0 \,\omega} \,\mathrm{d}t$$

- ♦ Comme l'énergie ne cesse de bouger, nous pouvons aussi dire que l'énergie qui a traversé la section S durant dt se retrouve dans le volume d $\mathscr{V}$  de section S et de longueur  $v_e dt$ , où  $v_e$  est la vitesse de l'énergie.
- $\diamondsuit$ Cela donne

$$\delta \mathscr{E} = \langle \overline{u_{\rm em}} \rangle \times S v_{\rm e} \, \mathrm{d}t \qquad \rightsquigarrow \qquad \delta \mathscr{E} = \frac{1}{4} \varepsilon_0 E_0^2 S v_{\rm e} \, \mathrm{d}t$$

 $\diamondsuit$  En égalant les deux résultats, nous trouvons

$$\frac{E_0^2 k_n S}{4 \mu_0 \omega} = \frac{1}{4} \varepsilon_0 E_0^2 S v_e \qquad \rightsquigarrow \qquad v_e = \frac{k_n}{\omega \mu_0 \varepsilon_0}$$

© Matthieu Rigaut

Version du 4 mars 2014
$\diamond$  Et ainsi

$$v_{\rm e} = \frac{k_n \, c^2}{\omega} \quad \rightsquigarrow \quad v_{\rm e} = \frac{c^2}{v_\varphi} = v_{\rm g}$$

 $\diamond$  Nous venons bien de prouver que, dans le cas étudié, l'énergie se déplace à la vitesse  $v_{\rm g}$ . C'est donc cette vitesse, et uniquement celle-ci, qui se **doit** d'être inférieure à la célérité de la lumière.

### $III \cdot 2 \cdot vi - vision en OPPM$

#### $\star$ transformation technique

 $\diamondsuit$ Reprenons l'expression du champ électrique.

$$\vec{E} = E_0 \sin\left(\frac{n \pi z}{a}\right) \cos\left(\omega t - k x\right) \vec{u}_y$$

 $\diamondsuit$ Utilisons la relation trigonométrique

$$\cos a \times \sin b = \frac{1}{2} \left( \sin(a+b) - \sin(a-b) \right)$$

 $\diamondsuit$ Cela donne

$$\vec{E} = \frac{E_0}{2} \sin\left(\omega t - kx + \frac{n\pi z}{a}\right) \vec{u}_y - \frac{E_0}{2} \sin\left(\omega t - kx - \frac{n\pi z}{a}\right) \vec{u}_y$$

 $\diamondsuit$  Ce que nous pouvons écrire

$$\vec{E} = \frac{E_0}{2} \sin\left(\omega t - \vec{k}_1 \cdot \vec{r}\right) \vec{u}_y - \frac{E_0}{2} \sin\left(\omega t - \vec{k}_2 \cdot \vec{r}\right) \vec{u}_y \quad \text{avec} \quad \begin{cases} \vec{k}_1 = k \, \vec{u}_x - \frac{n \, \pi}{a} \, \vec{u}_z \\ \vec{k}_2 = k \, \vec{u}_x + \frac{n \, \pi}{a} \, \vec{u}_z \end{cases}$$

#### $\star$ visualisation

 $\diamondsuit$ Ainsi $\vec{E}$  est la superposition de deux OPPM

$$\vec{E} = \vec{E}_1 + \vec{E}_2$$

 $\diamondsuit$ Pour chaque OPPM, nous pouvons utiliser la relation de structure. Ce<br/>la donne

$$\vec{B_1} = \frac{\vec{k_1} \wedge \vec{E_1}}{\omega}$$
 et  $\vec{B_2} = \frac{\vec{k_2} \wedge \vec{E_1}}{\omega}$ 

 $\Leftrightarrow$  Et comme  $\vec{B}$  est, par linéarité, la superposition de ces deux OPPM, nous avons

$$\vec{B} = \vec{B}_1 + \vec{B}_2$$

 $\diamondsuit$ Schématiquement, nous comprenons alors pour quoi  $\vec{B}$  a une composante tangentielle.

(C) Matthieu Rigaut



 $\diamondsuit$  Sur les schémas précédents, nous avons fait attention à :

- → mettre  $\vec{E_1}$  et  $\vec{E_2}$  en sens opposés (cf. expressions trouvées);
- → mettre  $\vec{B_1}$  et  $\vec{B_2}$  orthogonaux à  $\vec{k_1}$  et  $\vec{k_2}$ ;
- → ne pas mettre exactement les mêmes normes à  $\vec{B_1}$  et  $\vec{B_2}$  à cause du déphasage introduit par la cote z.
- $\Rightarrow$  Enfin, comme  $\vec{E}_1$  est une OPPM, nous pouvons utiliser la relation de dispersion

$$\ll k^2 = \frac{\omega^2}{c^2} \; \ast \;$$

 $\diamondsuit$ Sauf qu'il faut bien faire attention, ici, à prendre la norme au carré du vecteur d'onde.  $\diamondsuit$  Et cela donne

$$k^{2} + \frac{n^{2} \pi^{2}}{a^{2}} = \frac{\omega^{2}}{c^{2}}$$

♦ C'est bien la relation de dispersion que nous avions trouvée.

# Onde électromagnétique

# Au niveau du cours

## $\star$ Programme concerné

- $\diamondsuit$  Programme de 1<sup>re</sup> année :
  - → III.D.1. Électrostatique (dipôles)
  - $\rightarrow$  III.D.3. Magnétostatique (dipôles)
- $\diamond$  Programme de 2<sup>e</sup> année :
  - $\clubsuit$ I.C.3 Ondes électromagnétiques dans le vide

# $\star$ Les définitions

- $\diamond$  Sont à savoir :
  - → équation de propagation, champ électromagnétique;
  - $\rightarrow$  onde plane / sphérique, onde transverse;
  - $\rightarrow$  struture d'une onde électromagnétique;
  - → polarisation d'une onde / d'une lumière, polarisation elliptique / circulaire / rectiligne, polarisation droite / gauche;
  - $\rightarrow$  moments dipôlaires, polarisation ionique;
  - $\rightarrow$  onde évanescente;
  - $\rightarrow$  zone statique / de rayonnement;
  - → diffusion de RAYLEIGH;
  - $\clubsuit$  effet de peau.

# $\star$ Les grandeurs

- $\diamondsuit$ Connaître les unités de :
  - $\rightarrow$  moment dipôlaire (C.m).
- $\diamondsuit$  Connaître les petites relations suivantes ainsi que leur interprétation :

### $\star$ Les lois

 $\diamond$  Sont à connaître :

- $\rightarrow$  potentiel créé par un dipôle électrostatique;
- $\clubsuit$  actions subies par un dipôle électrique / magnétique ;
- → savoir réécrire les équations de MAXWELL pour une OPPM;
- → savoir caractériser les polarisations rectilignes, circulaires, elliptique en terme de déphasage.

# $\star$ la phénoménologie

 $\diamond$  Connaître :

- $\clubsuit$  connaître les différents domaines du spectre électromagnétique ;
- → savoir interpréter la décroissance en  $\frac{1}{r}$  d'une onde sphérique;

- $\rightarrow$  connaître les raisons microscopiques de la description dipôlaire de la matière ;
- $\rightarrow$  savoir interpréter les actions subies par un dipôle;
- $\clubsuit$  connaître les échelles d'observations d'un dipôle rayonnant ;
- $\rightarrow$  savoir interpréter l'expression du champ électromagnétique rayonné par un dipôle ;
- $\rightarrow$  savoir décrire et expliquer le modèle de l'électron élastiquement lié ;
- → savoir décrire et expliquer le modèle de DRÜDE pour la conduction électrique ;
- $\Rightarrow$  savoir interpréter l'expression de la conductivité complexe en HF et en BF.

# Au niveau des savoir-faire

#### $\star$ exercices classiques

 $\Rightarrow$  Savoir refaire / retrouver :

- $\rightarrow$  la structure d'une onde plane;
- $\rightarrow$  le type de polarisation à partir de l'expression analytique et inversement;
- → l'interprétation de l'OPPM en terme énergétique;
- $\clubsuit$  l'expression du potentiel et du champ électrique créés par un dipôle électrostatique ;
- → la puissance totale rayonnée par un dipôle à la distance r;
- $\clubsuit$  le moment dipôlaire induit avec le modèle de l'électron élastiquement lié ;
- $\rightarrow$  l'explication la couleur bleue du ciel;
- $\clubsuit$  l'expression de la conductivité complexe.